splines/src/lib.rs

407 lines
13 KiB
Rust
Raw Normal View History

2018-08-05 14:47:24 +02:00
//! # Spline interpolation made easy.
2018-08-05 01:12:22 +02:00
//!
//! This crate exposes splines for which each sections can be interpolated independently of each
//! other i.e. its possible to interpolate with a linear interpolator on one section and then
2018-08-05 14:47:24 +02:00
//! switch to a cubic Hermite interpolator for the next section.
2018-08-05 01:12:22 +02:00
//!
2018-08-05 14:47:24 +02:00
//! Most of the crate consists of three types:
2018-08-05 01:12:22 +02:00
//!
//! - [`Key`], which represents the control points by which the spline must pass.
//! - [`Interpolation`], the type of possible interpolation for each segment.
//! - [`Spline`], a spline from which you can *sample* points by interpolation.
//!
//! When adding control points, you add new sections. Two control points define a section i.e.
//! its not possible to define a spline without at least two control points. Every time you add a
//! new control point, a new section is created. Each section is assigned an interpolation mode that
//! is picked from its lower control point.
//!
2018-08-05 14:47:24 +02:00
//! # Quickly create splines
//!
2018-08-05 01:12:22 +02:00
//! ```
//! use splines::{Interpolation, Key, Spline};
//!
//! let start = Key::new(0., 0., Interpolation::Linear);
2018-08-05 17:11:44 +02:00
//! let end = Key::new(1., 10., Interpolation::default());
//! let spline = Spline::from_vec(vec![start, end]);
2018-08-05 14:47:24 +02:00
//! ```
//!
2018-08-05 17:11:44 +02:00
//! You will notice that we used `Interpolation::Linear` for the first key. The first key `start`s
2018-08-05 14:47:24 +02:00
//! interpolation will be used for the whole segment defined by those two keys. The `end`s
//! interpolation wont be used. You can in theory use any [`Interpolation`] you want for the last
2018-08-05 17:11:44 +02:00
//! key. We use the default one because we dont care.
2018-08-05 14:47:24 +02:00
//!
//! # Interpolate values
2018-08-05 01:12:22 +02:00
//!
2018-08-05 14:47:24 +02:00
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
//! value.
//!
//! If you try to sample in out-of-bounds interpolation parameter, youll get no value.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
2018-08-05 17:11:44 +02:00
//! # let spline = Spline::from_vec(vec![start, end]);
2018-08-05 01:12:22 +02:00
//! assert_eq!(spline.sample(0.), Some(0.));
2018-08-05 17:11:44 +02:00
//! assert_eq!(spline.clamped_sample(1.), 10.);
2018-08-05 14:47:24 +02:00
//! assert_eq!(spline.sample(1.1), None);
2018-08-05 01:12:22 +02:00
//! ```
2018-08-05 17:11:44 +02:00
//!
//! Its possible that you want to get a value even if youre out-of-bounds. This is especially
//! important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
//! that purpose.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.clamped_sample(-0.9), 0.); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), 10.); // clamped to the last key
//! ```
//! # Features and customization
2018-08-05 17:11:44 +02:00
//!
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
//! the default configuration (i.e. you just add `"spline = …"` to your `Cargo.toml`) will always
//! give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
//! modes are. However, you might want more. Instead of letting other people do the extra work to
//! add implementations for very famous and useful traits and do it in less efficient way, because
//! they wouldnt have access to the internals of this crate, its possible to enable features in an
//! ad hoc way.
//!
//! This mechanism is not final and this is currently an experiment to see how people like it or
//! not. Its especially important to see how it copes with the documentation.
//!
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serialization / deserialization**
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde`.
//! + Enable with the feature `"serialization"`.
2018-08-05 01:12:22 +02:00
extern crate cgmath;
#[cfg(feature = "serialization")] extern crate serde;
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;
use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
2018-08-05 01:12:22 +02:00
use std::cmp::Ordering;
use std::f32::consts;
use std::ops::{Add, Div, Mul, Sub};
/// A spline control point.
///
2018-08-05 17:11:44 +02:00
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation hint used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing.
2018-08-05 01:12:22 +02:00
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
2018-08-05 01:12:22 +02:00
pub struct Key<T> {
2018-08-05 17:11:44 +02:00
/// Interpolation parameter at which the [`Key`] should be reached.
2018-08-05 01:12:22 +02:00
pub t: f32,
2018-08-05 17:11:44 +02:00
/// Held value.
2018-08-05 01:12:22 +02:00
pub value: T,
/// Interpolation mode.
pub interpolation: Interpolation
}
impl<T> Key<T> {
/// Create a new key.
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
Key {
t: t,
value: value,
interpolation: interpolation
}
}
}
/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
2018-08-05 01:12:22 +02:00
pub enum Interpolation {
2018-08-05 01:17:17 +02:00
/// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
2018-08-05 01:12:22 +02:00
/// key is used.
///
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
2018-08-05 01:17:17 +02:00
/// first key will be kept until the next key. Set it to `0.` and the first key will never be
/// used.*
2018-08-05 01:12:22 +02:00
Step(f32),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation.
CatmullRom
}
impl Default for Interpolation {
/// `Interpolation::Linear` is the default.
fn default() -> Self {
Interpolation::Linear
}
}
/// Spline curve used to provide interpolation between control points (keys).
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
2018-08-05 01:12:22 +02:00
pub struct Spline<T>(Vec<Key<T>>);
impl<T> Spline<T> {
2018-08-05 17:11:44 +02:00
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
2018-08-05 01:12:22 +02:00
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
}
2018-08-05 17:11:44 +02:00
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
Self::from_vec(iter.collect())
}
2018-08-05 01:12:22 +02:00
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T>] {
&self.0
}
/// Sample a spline at a given time.
///
2018-08-05 17:11:44 +02:00
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
2018-08-05 01:12:22 +02:00
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that make the
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling.
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
let keys = &self.0;
2018-08-05 17:11:44 +02:00
let i = search_lower_cp(keys, t)?;
2018-08-05 01:12:22 +02:00
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
},
Interpolation::Linear => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
},
Interpolation::Cosine => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (1. - f32::cos(nt * consts::PI)) * 0.5;
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
},
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
}
}
2018-08-05 14:47:24 +02:00
/// Sample a spline at a given time with clamping.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
///
/// # Panic
///
/// This function panics if you have no key.
pub fn clamped_sample(&self, t: f32) -> T where T: Interpolate {
let first = self.0.first().unwrap();
let last = self.0.last().unwrap();
if t <= first.t {
return first.value;
} else if t >= last.t {
return last.value;
}
self.sample(t).unwrap()
}
2018-08-05 01:12:22 +02:00
}
/// Iterator over spline keys.
2018-08-05 17:11:44 +02:00
///
/// This iterator type assures you to iterate over sorted keys.
2018-08-05 01:14:55 +02:00
pub struct Iter<'a, T> where T: 'a {
2018-08-05 01:12:22 +02:00
anim_param: &'a Spline<T>,
i: usize
}
2018-08-05 01:14:55 +02:00
impl<'a, T> Iterator for Iter<'a, T> {
2018-08-05 01:12:22 +02:00
type Item = &'a Key<T>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.anim_param.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T> IntoIterator for &'a Spline<T> {
type Item = &'a Key<T>;
2018-08-05 01:14:55 +02:00
type IntoIter = Iter<'a, T>;
2018-08-05 01:12:22 +02:00
fn into_iter(self) -> Self::IntoIter {
2018-08-05 01:14:55 +02:00
Iter {
2018-08-05 01:12:22 +02:00
anim_param: self,
i: 0
}
}
}
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
pub trait Interpolate: Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: f32) -> Self;
/// Cubic hermite interpolation.
///
/// Default to `Self::lerp`.
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
Self::lerp(a.0, b.0, t)
}
}
impl Interpolate for f32 {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Vector2<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Vector3<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Vector4<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Quaternion<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.nlerp(b, t)
}
}
2018-08-05 01:12:22 +02:00
// Default implementation of Interpolate::cubic_hermit.
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
2018-08-05 01:12:22 +02:00
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
// time stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = 2. * t3;
let three_t2 = 3. * t2;
// tangents
let m0 = (b.0 - x.0) / (b.1 - x.1);
let m1 = (y.0 - a.0) / (y.1 - a.1);
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
2018-08-05 14:47:24 +02:00
assert!(cp1.t != cp.t, "overlapping keys");
2018-08-05 01:12:22 +02:00
(t - cp.t) / (cp1.t - cp.t)
}
2018-08-05 17:11:44 +02:00
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}