diff --git a/src/interpolate.rs b/src/interpolate.rs index 2ef09ba..6234258 100644 --- a/src/interpolate.rs +++ b/src/interpolate.rs @@ -42,277 +42,126 @@ use core::ops::{Add, Mul, Sub}; use std::f32; #[cfg(feature = "std")] use std::f64; -#[cfg(feature = "std")] -use std::ops::{Add, Mul, Sub}; -/// Keys that can be interpolated in between. Implementing this trait is required to perform -/// sampling on splines. +/// Types that can be used as interpolator in splines. /// -/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but -/// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for -/// instance to know which trait your type must implement to be usable. +/// An interpolator value is like the fabric on which control keys (and sampled values) live on. +pub trait Interpolator: Sized + Copy + PartialOrd { + /// Normalize the interpolator. + fn normalize(self, start: Self, end: Self) -> Self; +} + +macro_rules! impl_Interpolator { + ($t:ty) => { + impl Interpolator for $t { + fn normalize(self, start: Self, end: Self) -> Self { + (self - start) / (end - start) + } + } + }; +} + +impl_Interpolator!(f32); +impl_Interpolator!(f64); + +/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines. /// -/// [`Spline::sample`]: crate::spline::Spline::sample -pub trait Interpolate: Sized + Copy + Linear { +/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but +/// you’re free to use the ones you like. +pub trait Interpolate: Sized + Copy { + /// Step interpolation. + fn step(t: T, threshold: T, a: Self, b: Self) -> Self; + /// Linear interpolation. - fn lerp(a: Self, b: Self, t: T) -> Self; + fn lerp(t: T, a: Self, b: Self) -> Self; + + /// Cosine interpolation. + fn cosine(t: T, a: Self, b: Self) -> Self; /// Cubic hermite interpolation. - /// - /// Default to [`lerp`]. - /// - /// [`lerp`]: Interpolate::lerp - fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self { - Self::lerp(a.0, b.0, t) - } + fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self; /// Quadratic Bézier interpolation. - fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self; + /// + /// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve. + fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self; /// Cubic Bézier interpolation. - fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self; + /// + /// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the + /// input tangent of `b` to the curve. + fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self; + + /// Cubic Bézier interpolation – special case for non-explicit second tangent. + /// + /// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by + /// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are + /// mirrored for the same key). + fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self; } -/// Set of types that support additions and subtraction. -/// -/// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere. -pub trait Additive: Copy + Add + Sub {} - -impl Additive for T where T: Copy + Add + Sub {} - -/// Set of additive types that support outer multiplication and division, making them linear. -pub trait Linear: Additive { - /// Apply an outer multiplication law. - fn outer_mul(self, t: T) -> Self; - - /// Apply an outer division law. - fn outer_div(self, t: T) -> Self; -} - -macro_rules! impl_linear_simple { - ($t:ty) => { - impl Linear<$t> for $t { - fn outer_mul(self, t: $t) -> Self { - self * t +#[macro_export] +macro_rules! impl_Interpolate { + ($t:ty, $v:ty, $pi:expr) => { + impl $crate::interpolate::Interpolate<$t> for $v { + fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self { + if t < threshold { + a + } else { + b + } } - /// Apply an outer division law. - fn outer_div(self, t: $t) -> Self { - self / t - } - } - }; -} - -impl_linear_simple!(f32); -impl_linear_simple!(f64); - -macro_rules! impl_linear_cast { - ($t:ty, $q:ty) => { - impl Linear<$t> for $q { - fn outer_mul(self, t: $t) -> Self { - self * t as $q + fn cosine(t: $t, a: Self, b: Self) -> Self { + let cos_nt = (1. - (t * $pi).cos()) * 0.5; + >::lerp(cos_nt, a, b) } - /// Apply an outer division law. - fn outer_div(self, t: $t) -> Self { - self / t as $q - } - } - }; -} - -impl_linear_cast!(f32, f64); -impl_linear_cast!(f64, f32); - -/// Types with a neutral element for multiplication. -pub trait One { - /// The neutral element for the multiplicative monoid — typically called `1`. - fn one() -> Self; -} - -macro_rules! impl_one_float { - ($t:ty) => { - impl One for $t { - #[inline(always)] - fn one() -> Self { - 1. - } - } - }; -} - -impl_one_float!(f32); -impl_one_float!(f64); - -/// Types with a sane definition of π and cosine. -pub trait Trigo { - /// π. - fn pi() -> Self; - - /// Cosine of the argument. - fn cos(self) -> Self; -} - -impl Trigo for f32 { - #[inline(always)] - fn pi() -> Self { - f32::consts::PI - } - - #[inline(always)] - fn cos(self) -> Self { - #[cfg(feature = "std")] - { - self.cos() - } - - #[cfg(not(feature = "std"))] - { - unsafe { cosf32(self) } - } - } -} - -impl Trigo for f64 { - #[inline(always)] - fn pi() -> Self { - f64::consts::PI - } - - #[inline(always)] - fn cos(self) -> Self { - #[cfg(feature = "std")] - { - self.cos() - } - - #[cfg(not(feature = "std"))] - { - unsafe { cosf64(self) } - } - } -} - -/// Default implementation of [`Interpolate::cubic_hermite`]. -/// -/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). -pub fn cubic_hermite_def(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V -where - V: Linear, - T: Additive + Mul + One, -{ - // some stupid generic constants, because Rust doesn’t have polymorphic literals… - let one_t = T::one(); - let two_t = one_t + one_t; // lolololol - let three_t = two_t + one_t; // megalol - - // sampler stuff - let t2 = t * t; - let t3 = t2 * t; - let two_t3 = t3 * two_t; - let three_t2 = t2 * three_t; - - // tangents - let m0 = (b.0 - x.0).outer_div(b.1 - x.1); - let m1 = (y.0 - a.0).outer_div(y.1 - a.1); - - a.0.outer_mul(two_t3 - three_t2 + one_t) - + m0.outer_mul(t3 - t2 * two_t + t) - + b.0.outer_mul(three_t2 - two_t3) - + m1.outer_mul(t3 - t2) -} - -/// Default implementation of [`Interpolate::quadratic_bezier`]. -/// -/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). -pub fn quadratic_bezier_def(a: V, u: V, b: V, t: T) -> V -where - V: Linear, - T: Additive + Mul + One, -{ - let one_t = T::one() - t; - let one_t_2 = one_t * one_t; - u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t) -} - -/// Default implementation of [`Interpolate::cubic_bezier`]. -/// -/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). -pub fn cubic_bezier_def(a: V, u: V, v: V, b: V, t: T) -> V -where - V: Linear, - T: Additive + Mul + One, -{ - let one_t = T::one() - t; - let one_t_2 = one_t * one_t; - let one_t_3 = one_t_2 * one_t; - let three = T::one() + T::one() + T::one(); - - a.outer_mul(one_t_3) - + u.outer_mul(three * one_t_2 * t) - + v.outer_mul(three * one_t * t * t) - + b.outer_mul(t * t * t) -} - -macro_rules! impl_interpolate_simple { - ($t:ty) => { - impl Interpolate<$t> for $t { - fn lerp(a: Self, b: Self, t: $t) -> Self { + fn lerp(t: $t, a: Self, b: Self) -> Self { a * (1. - t) + b * t } - fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self { - cubic_hermite_def(x, a, b, y, t) + fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self { + // sampler stuff + let two_t = t * 2.; + let three_t = t * 3.; + let t2 = t * t; + let t3 = t2 * t; + let two_t3 = t3 * two_t; + let three_t2 = t2 * three_t; + + // tangents + let m0 = (b.1 - x.1) / (b.0 - x.0); + let m1 = (y.1 - a.1) / (y.0 - a.0); + + a.1 * (two_t3 - three_t2 + 1.) + + m0 * (t3 - t2 * two_t + t) + + b.1 * (three_t2 - two_t3) + + m1 * (t3 - t2) } - fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self { - quadratic_bezier_def(a, u, b, t) + fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self { + let one_t = 1. - t; + let one_t2 = one_t * one_t; + + u + (a - u) * one_t2 + (b - u) * t * t } - fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self { - cubic_bezier_def(a, u, v, b, t) + fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self { + let one_t = 1. - t; + let one_t2 = one_t * one_t; + let one_t3 = one_t2 * one_t; + let t2 = t * t; + + a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t + } + + fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self { + >::cubic_bezier(t, a, u, b + b - v, b) } } }; } -impl_interpolate_simple!(f32); -impl_interpolate_simple!(f64); - -macro_rules! impl_interpolate_via { - ($t:ty, $v:ty) => { - impl Interpolate<$t> for $v { - fn lerp(a: Self, b: Self, t: $t) -> Self { - a * (1. - t as $v) + b * t as $v - } - - fn cubic_hermite( - (x, xt): (Self, $t), - (a, at): (Self, $t), - (b, bt): (Self, $t), - (y, yt): (Self, $t), - t: $t, - ) -> Self { - cubic_hermite_def( - (x, xt as $v), - (a, at as $v), - (b, bt as $v), - (y, yt as $v), - t as $v, - ) - } - - fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self { - quadratic_bezier_def(a, u, b, t as $v) - } - - fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self { - cubic_bezier_def(a, u, v, b, t as $v) - } - } - }; -} - -impl_interpolate_via!(f32, f64); -impl_interpolate_via!(f64, f32); +impl_Interpolate!(f32, f32, std::f32::consts::PI); +impl_Interpolate!(f64, f64, std::f64::consts::PI); diff --git a/src/spline.rs b/src/spline.rs index ba260b7..8090008 100644 --- a/src/spline.rs +++ b/src/spline.rs @@ -1,5 +1,9 @@ //! Spline curves and operations. +#[cfg(feature = "std")] +use crate::interpolate::{Interpolate, Interpolator}; +use crate::interpolation::Interpolation; +use crate::key::Key; #[cfg(not(feature = "std"))] use alloc::vec::Vec; #[cfg(not(feature = "std"))] @@ -10,12 +14,6 @@ use core::ops::{Div, Mul}; use serde_derive::{Deserialize, Serialize}; #[cfg(feature = "std")] use std::cmp::Ordering; -#[cfg(feature = "std")] -use std::ops::{Div, Mul}; - -use crate::interpolate::{Additive, Interpolate, One, Trigo}; -use crate::interpolation::Interpolation; -use crate::key::Key; /// Spline curve used to provide interpolation between control points (keys). /// @@ -104,8 +102,8 @@ impl Spline { /// the sampling. pub fn sample_with_key(&self, t: T) -> Option> where - T: Additive + One + Trigo + Mul + Div + PartialOrd, - V: Additive + Interpolate, + T: Interpolator, + V: Interpolate, { let keys = &self.0; let i = search_lower_cp(keys, t)?; @@ -114,26 +112,24 @@ impl Spline { let value = match cp0.interpolation { Interpolation::Step(threshold) => { let cp1 = &keys[i + 1]; - let nt = normalize_time(t, cp0, cp1); - let value = if nt < threshold { cp0.value } else { cp1.value }; + let nt = t.normalize(cp0.t, cp1.t); + let value = V::step(nt, threshold, cp0.value, cp1.value); Some(value) } Interpolation::Linear => { let cp1 = &keys[i + 1]; - let nt = normalize_time(t, cp0, cp1); - let value = Interpolate::lerp(cp0.value, cp1.value, nt); + let nt = t.normalize(cp0.t, cp1.t); + let value = V::lerp(nt, cp0.value, cp1.value); Some(value) } Interpolation::Cosine => { - let two_t = T::one() + T::one(); let cp1 = &keys[i + 1]; - let nt = normalize_time(t, cp0, cp1); - let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t; - let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt); + let nt = t.normalize(cp0.t, cp1.t); + let value = V::cosine(nt, cp0.value, cp1.value); Some(value) } @@ -147,13 +143,13 @@ impl Spline { let cp1 = &keys[i + 1]; let cpm0 = &keys[i - 1]; let cpm1 = &keys[i + 2]; - let nt = normalize_time(t, cp0, cp1); - let value = Interpolate::cubic_hermite( - (cpm0.value, cpm0.t), - (cp0.value, cp0.t), - (cp1.value, cp1.t), - (cpm1.value, cpm1.t), + let nt = t.normalize(cp0.t, cp1.t); + let value = V::cubic_hermite( nt, + (cpm0.t, cpm0.value), + (cp0.t, cp0.value), + (cp1.t, cp1.value), + (cpm1.t, cpm1.value), ); Some(value) @@ -163,18 +159,14 @@ impl Spline { Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => { // We need to check the next control point to see whether we want quadratic or cubic Bezier. let cp1 = &keys[i + 1]; - let nt = normalize_time(t, cp0, cp1); + let nt = t.normalize(cp0.t, cp1.t); let value = match cp1.interpolation { - Interpolation::Bezier(v) => { - Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt) - } + Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value), - Interpolation::StrokeBezier(v, _) => { - Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt) - } + Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value), - _ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt), + _ => V::quadratic_bezier(nt, cp0.value, u, cp1.value), }; Some(value) @@ -188,8 +180,8 @@ impl Spline { /// pub fn sample(&self, t: T) -> Option where - T: Additive + One + Trigo + Mul + Div + PartialOrd, - V: Additive + Interpolate, + T: Interpolator, + V: Interpolate, { self.sample_with_key(t).map(|sampled| sampled.value) } @@ -207,8 +199,8 @@ impl Spline { /// This function returns [`None`] if you have no key. pub fn clamped_sample_with_key(&self, t: T) -> Option> where - T: Additive + One + Trigo + Mul + Div + PartialOrd, - V: Additive + Interpolate, + T: Interpolator, + V: Interpolate, { if self.0.is_empty() { return None; @@ -242,8 +234,8 @@ impl Spline { /// Sample a spline at a given time with clamping. pub fn clamped_sample(&self, t: T) -> Option where - T: Additive + One + Trigo + Mul + Div + PartialOrd, - V: Additive + Interpolate, + T: Interpolator, + V: Interpolate, { self.clamped_sample_with_key(t).map(|sampled| sampled.value) } @@ -322,16 +314,6 @@ pub struct KeyMut<'a, T, V> { pub interpolation: &'a mut Interpolation, } -// Normalize a time ([0;1]) given two control points. -#[inline(always)] -pub(crate) fn normalize_time(t: T, cp: &Key, cp1: &Key) -> T -where - T: Additive + Div + PartialEq, -{ - assert!(cp1.t != cp.t, "overlapping keys"); - (t - cp.t) / (cp1.t - cp.t) -} - // Find the lower control point corresponding to a given time. fn search_lower_cp(cps: &[Key], t: T) -> Option where