Implement impl-nalgebra feature.
This commit is contained in:
parent
427895ab10
commit
65a713c51b
@ -21,14 +21,15 @@ maintenance = { status = "actively-developed" }
|
||||
|
||||
[features]
|
||||
default = ["std"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
std = ["num-traits/std"]
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-nalgebra = ["nalgebra"]
|
||||
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
std = []
|
||||
|
||||
[dependencies]
|
||||
alga = { version = "0.9", optional = true }
|
||||
cgmath = { version = "0.17", optional = true }
|
||||
nalgebra = { version = ">=0.14, <0.19", optional = true }
|
||||
num-traits = { version = "0.2", default-features = false }
|
||||
num-traits = { version = "0.2", optional = true }
|
||||
serde = { version = "1", optional = true }
|
||||
serde_derive = { version = "1", optional = true }
|
||||
|
@ -1,7 +1,11 @@
|
||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||||
|
||||
use num_traits::Float;
|
||||
#[cfg(feature = "std")] use std::f32;
|
||||
#[cfg(not(feature = "std"))] use core::f32;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
|
||||
#[cfg(feature = "std")] use std::f64;
|
||||
#[cfg(not(feature = "std"))] use core::f64;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
|
||||
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
@ -20,15 +24,147 @@ pub trait Interpolate<T>: Sized + Copy {
|
||||
}
|
||||
}
|
||||
|
||||
/// A trait for anything that supports additions, subtraction, multiplication and division.
|
||||
pub trait Additive:
|
||||
Copy +
|
||||
PartialEq +
|
||||
PartialOrd +
|
||||
Add<Self, Output = Self> +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
|
||||
impl<T> Additive for T
|
||||
where T: Copy +
|
||||
PartialEq +
|
||||
PartialOrd +
|
||||
Add<Self, Output = Self> +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
|
||||
/// Linear combination.
|
||||
pub trait Linear<T> {
|
||||
/// Apply an outer multiplication law.
|
||||
fn outer_mul(self, t: T) -> Self;
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: T) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_linear_simple {
|
||||
($t:ty) => {
|
||||
impl Linear<$t> for $t {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_linear_simple!(f32);
|
||||
impl_linear_simple!(f64);
|
||||
|
||||
macro_rules! impl_linear_cast {
|
||||
($t:ty, $q:ty) => {
|
||||
impl Linear<$t> for $q {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t as $q
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t as $q
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_linear_cast!(f32, f64);
|
||||
impl_linear_cast!(f64, f32);
|
||||
|
||||
/// Types with a neutral element for multiplication.
|
||||
pub trait One {
|
||||
/// Return the neutral element for the multiplicative monoid.
|
||||
fn one() -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_one_float {
|
||||
($t:ty) => {
|
||||
impl One for $t {
|
||||
#[inline(always)]
|
||||
fn one() -> Self {
|
||||
1.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_one_float!(f32);
|
||||
impl_one_float!(f64);
|
||||
|
||||
/// Types with a sane definition of π and cosine.
|
||||
pub trait Trigo {
|
||||
/// π.
|
||||
fn pi() -> Self;
|
||||
|
||||
/// Cosine of the argument.
|
||||
fn cos(self) -> Self;
|
||||
}
|
||||
|
||||
impl Trigo for f32 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f32::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf32(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Trigo for f64 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f64::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf64(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Default implementation of Interpolate::cubic_hermite.
|
||||
//
|
||||
// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub(crate) fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Float + Mul<T, Output = V> + Div<T, Output = V>,
|
||||
T: Float {
|
||||
where V: Additive + Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let two_t = T::one() + T::one(); // lolololol
|
||||
let three_t = two_t + T::one(); // megalol
|
||||
let one_t = T::one();
|
||||
let two_t = one_t + one_t; // lolololol
|
||||
let three_t = two_t + one_t; // megalol
|
||||
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
@ -37,10 +173,10 @@ where V: Float + Mul<T, Output = V> + Div<T, Output = V>,
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||||
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
||||
|
||||
a.0 * (two_t3 - three_t2 + T::one()) + m0 * (t3 - t2 * two_t + t) + b.0 * (three_t2 - two_t3) + m1 * (t3 - t2)
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
@ -76,4 +212,3 @@ macro_rules! impl_interpolate_via {
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
|
||||
|
@ -97,6 +97,8 @@
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
||||
|
||||
#[cfg(not(feature = "std"))] extern crate alloc;
|
||||
|
||||
#[cfg(feature = "impl-cgmath")] mod cgmath;
|
||||
pub mod interpolate;
|
||||
pub mod interpolation;
|
||||
|
@ -1,36 +1,63 @@
|
||||
use crate::Interpolate;
|
||||
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
|
||||
use nalgebra::{DefaultAllocator, DimName, Point, Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||
use nalgebra::allocator::Allocator;
|
||||
use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
|
||||
use nalgebra as na;
|
||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
||||
|
||||
use num_traits::Float;
|
||||
|
||||
macro_rules! impl_interpolate_na_vector {
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
impl<T, V> Interpolate<T> for $($t)*<V> where T: Float, V: na::Scalar + Interpolate<T> {
|
||||
// implement Linear
|
||||
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedMul + ClosedDiv {
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, V> Interpolate<T> for $($t)*<V>
|
||||
where Self: Linear<T>,
|
||||
T: Additive + One + Mul<T, Output = T>,
|
||||
V: nt::One +
|
||||
nt::Zero +
|
||||
Additive +
|
||||
Scalar +
|
||||
ClosedAdd +
|
||||
ClosedMul +
|
||||
ClosedSub +
|
||||
Interpolate<T> {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
||||
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_na_vector!(na::Vector1);
|
||||
impl_interpolate_na_vector!(na::Vector2);
|
||||
impl_interpolate_na_vector!(na::Vector3);
|
||||
impl_interpolate_na_vector!(na::Vector4);
|
||||
impl_interpolate_na_vector!(na::Vector5);
|
||||
impl_interpolate_na_vector!(na::Vector6);
|
||||
impl_interpolate_vector!(Vector1);
|
||||
impl_interpolate_vector!(Vector2);
|
||||
impl_interpolate_vector!(Vector3);
|
||||
impl_interpolate_vector!(Vector4);
|
||||
impl_interpolate_vector!(Vector5);
|
||||
impl_interpolate_vector!(Vector6);
|
||||
|
||||
impl<T, N, D> Interpolate<T> for na::Point<N, D>
|
||||
where D: na::DimName,
|
||||
na::DefaultAllocator: na::allocator::Allocator<N, D>,
|
||||
<na::DefaultAllocator as na::allocator::Allocator<N, D>>::Buffer: Copy,
|
||||
N: na::Scalar + Interpolate<T>,
|
||||
T: Float {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
// The 'coords' of a point is just a vector, so we can interpolate component-wise
|
||||
// over these vectors.
|
||||
let coords = na::Vector::zip_map(&a.coords, &b.coords, |c1, c2| Interpolate::lerp(c1, c2, t));
|
||||
na::Point::from(coords)
|
||||
impl<T, D> Linear<T> for Point<T, D>
|
||||
where D: DimName,
|
||||
DefaultAllocator: Allocator<T, D>,
|
||||
<DefaultAllocator as Allocator<T, D>>::Buffer: Copy,
|
||||
T: Scalar + ClosedDiv + ClosedMul {
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
@ -1,14 +1,14 @@
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
|
||||
use crate::interpolate::Interpolate;
|
||||
use crate::interpolate::{Interpolate, Additive, One, Trigo};
|
||||
use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
|
||||
use num_traits::{Float, FloatConst};
|
||||
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
#[derive(Debug, Clone)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
@ -53,7 +53,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||||
/// sampling.
|
||||
pub fn sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||||
pub fn sample(&self, t: T) -> Option<V> where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T>, V: Interpolate<T> {
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
@ -76,7 +76,7 @@ impl<T, V> Spline<T, V> {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::PI()).cos()) / two_t;
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
}
|
||||
@ -108,7 +108,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns `None` if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V> where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T>, V: Interpolate<T> {
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
@ -136,7 +136,7 @@ pub(crate) fn normalize_time<T, V>(
|
||||
t: T,
|
||||
cp: &Key<T, V>,
|
||||
cp1: &Key<T, V>
|
||||
) -> T where T: Float {
|
||||
) -> T where T: Additive + Div<T, Output = T> {
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user