Implement impl-cgmath.

This commit is contained in:
Dimitri Sabadie 2019-04-21 18:11:06 +02:00
parent 9d5971a5f7
commit 70d6cf2081
5 changed files with 63 additions and 23 deletions

View File

@ -28,7 +28,7 @@ std = []
[dependencies] [dependencies]
alga = { version = "0.9", optional = true } alga = { version = "0.9", optional = true }
cgmath = { version = "0.17", optional = true } cgmath = { version = "0.16", optional = true }
nalgebra = { version = ">=0.14, <0.19", optional = true } nalgebra = { version = ">=0.14, <0.19", optional = true }
num-traits = { version = "0.2", optional = true } num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true } serde = { version = "1", optional = true }

View File

@ -1,26 +1,52 @@
use cgmath::{BaseNum, InnerSpace, Quaternion, VectorSpace, Vector2, Vector3, Vector4}; use cgmath::{BaseFloat, BaseNum, InnerSpace, Quaternion, VectorSpace, Vector1, Vector2, Vector3, Vector4};
use num_traits::Float;
use crate::interpolate::{Interpolate, cubic_hermite_def}; use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
macro_rules! impl_interpolate_vec { macro_rules! impl_interpolate_vec {
($t:ty, $($q:tt)*) => { ($($t:tt)*) => {
impl Interpolate<$t> for $($q)*<$t> { impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
fn lerp(a: Self, b: Self, t: $t) -> Self { fn outer_mul(self, t: T) -> Self {
self * t
}
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for $($t)*<T> where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
fn lerp(a: Self, b: Self, t: T) -> Self {
a.lerp(b, t) a.lerp(b, t)
} }
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self { fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t) cubic_hermite_def(x, a, b, y, t)
} }
} }
} }
} }
impl_interpolate_vec!(f32, Vector2); impl_interpolate_vec!(Vector1);
impl_interpolate_vec!(Vector2);
impl_interpolate_vec!(Vector3);
impl_interpolate_vec!(Vector4);
//impl Interpolate for Quaternion<f32> { impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
// fn lerp(a: Self, b: Self, t: f32) -> Self { fn outer_mul(self, t: T) -> Self {
// a.nlerp(b, t) self * t
// } }
//}
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T> where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}

View File

@ -27,16 +27,12 @@ pub trait Interpolate<T>: Sized + Copy {
/// A trait for anything that supports additions, subtraction, multiplication and division. /// A trait for anything that supports additions, subtraction, multiplication and division.
pub trait Additive: pub trait Additive:
Copy + Copy +
PartialEq +
PartialOrd +
Add<Self, Output = Self> + Add<Self, Output = Self> +
Sub<Self, Output = Self> { Sub<Self, Output = Self> {
} }
impl<T> Additive for T impl<T> Additive for T
where T: Copy + where T: Copy +
PartialEq +
PartialOrd +
Add<Self, Output = Self> + Add<Self, Output = Self> +
Sub<Self, Output = Self> { Sub<Self, Output = Self> {
} }

View File

@ -53,7 +53,9 @@ impl<T, V> Spline<T, V> {
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre /// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the /// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling. /// sampling.
pub fn sample(&self, t: T) -> Option<V> where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T>, V: Interpolate<T> { pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0; let keys = &self.0;
let i = search_lower_cp(keys, t)?; let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i]; let cp0 = &keys[i];
@ -108,7 +110,9 @@ impl<T, V> Spline<T, V> {
/// # Error /// # Error
/// ///
/// This function returns `None` if you have no key. /// This function returns `None` if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V> where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T>, V: Interpolate<T> { pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() { if self.0.is_empty() {
return None; return None;
} }
@ -136,7 +140,7 @@ pub(crate) fn normalize_time<T, V>(
t: T, t: T,
cp: &Key<T, V>, cp: &Key<T, V>,
cp1: &Key<T, V> cp1: &Key<T, V>
) -> T where T: Additive + Div<T, Output = T> { ) -> T where T: Additive + Div<T, Output = T> + PartialEq {
assert!(cp1.t != cp.t, "overlapping keys"); assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t) (t - cp.t) / (cp1.t - cp.t)
} }

View File

@ -1,7 +1,7 @@
use splines::{Interpolation, Key, Spline}; use splines::{Interpolation, Key, Spline};
#[cfg(feature = "impl-nalgebra")] #[cfg(feature = "impl-cgmath")] use cgmath as cg;
use nalgebra as na; #[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[test] #[test]
fn step_interpolation_f32() { fn step_interpolation_f32() {
@ -145,6 +145,20 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.clamped_sample(11.), Some(4.)); assert_eq!(spline.clamped_sample(11.), Some(4.));
} }
#[cfg(feature = "impl-cgmath")]
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "impl-nalgebra")] #[cfg(feature = "impl-nalgebra")]
#[test] #[test]
fn nalgebra_vector_interpolation() { fn nalgebra_vector_interpolation() {