Writing the front page documentation.
This commit is contained in:
commit
81ffaa8fbf
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
/target
|
||||||
|
**/*.rs.bk
|
||||||
|
Cargo.lock
|
17
.travis.yml
Normal file
17
.travis.yml
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
language: rust
|
||||||
|
|
||||||
|
rust:
|
||||||
|
- stable
|
||||||
|
- beta
|
||||||
|
- nightly
|
||||||
|
|
||||||
|
os:
|
||||||
|
- linux
|
||||||
|
- osx
|
||||||
|
|
||||||
|
script:
|
||||||
|
- rustc --version
|
||||||
|
- cargo --version
|
||||||
|
- cargo build --verbose
|
||||||
|
- cargo test --lib --verbose
|
||||||
|
- cd examples && cargo check --verbose
|
20
Cargo.toml
Normal file
20
Cargo.toml
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
[package]
|
||||||
|
name = "splines"
|
||||||
|
version = "0.1.0"
|
||||||
|
license = "BSD-3-Clause"
|
||||||
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
|
description = "Spline interpolation made easy"
|
||||||
|
keywords = ["spline", "interpolation"]
|
||||||
|
categories = ["science"]
|
||||||
|
homepage = "https://github.com/phaazon/spline"
|
||||||
|
repository = "https://github.com/phaazon/spline"
|
||||||
|
documentation = "https://docs.rs/spline"
|
||||||
|
readme = "README.md"
|
||||||
|
|
||||||
|
[badges]
|
||||||
|
travis-ci = { repository = "phaazon/spline", branch = "master" }
|
||||||
|
is-it-maintained-issue-resolution = { repository = "phaazon/spline" }
|
||||||
|
is-it-maintained-open-issues = { repository = "phaazon/spline" }
|
||||||
|
maintenance = { status = "actively-developed" }
|
||||||
|
|
||||||
|
[dependencies]
|
239
src/lib.rs
Normal file
239
src/lib.rs
Normal file
@ -0,0 +1,239 @@
|
|||||||
|
//! Spline interpolation made easy.
|
||||||
|
//!
|
||||||
|
//! This crate exposes splines for which each sections can be interpolated independently of each
|
||||||
|
//! other – i.e. it’s possible to interpolate with a linear interpolator on one section and then
|
||||||
|
//! switch to a cube Hermite interpolatior for the next section.
|
||||||
|
//!
|
||||||
|
//! Most of the library consists of three types:
|
||||||
|
//!
|
||||||
|
//! - [`Key`], which represents the control points by which the spline must pass.
|
||||||
|
//! - [`Interpolation`], the type of possible interpolation for each segment.
|
||||||
|
//! - [`Spline`], a spline from which you can *sample* points by interpolation.
|
||||||
|
//!
|
||||||
|
//! When adding control points, you add new sections. Two control points define a section – i.e.
|
||||||
|
//! it’s not possible to define a spline without at least two control points. Every time you add a
|
||||||
|
//! new control point, a new section is created. Each section is assigned an interpolation mode that
|
||||||
|
//! is picked from its lower control point.
|
||||||
|
//!
|
||||||
|
//! ```
|
||||||
|
//! use splines::{Interpolation, Key, Spline};
|
||||||
|
//!
|
||||||
|
//! let start = Key::new(0., 0., Interpolation::Linear);
|
||||||
|
//! let end = Key::new(1., 10., Interpolation::Linear);
|
||||||
|
//! let spline = Spline::from_keys(vec![start, end]);
|
||||||
|
//!
|
||||||
|
//! assert_eq!(spline.sample(0.), Some(0.));
|
||||||
|
//! assert_eq!(spline.sample(1.), Some(10.));
|
||||||
|
//! ```
|
||||||
|
|
||||||
|
use std::cmp::Ordering;
|
||||||
|
use std::f32::consts;
|
||||||
|
use std::ops::{Add, Div, Mul, Sub};
|
||||||
|
|
||||||
|
/// A spline control point.
|
||||||
|
///
|
||||||
|
/// This type associates a value at a given time. It also contains an interpolation object used to
|
||||||
|
/// determine how to interpolate values on the segment defined by this key and the next one.
|
||||||
|
#[derive(Copy, Clone, Debug)]
|
||||||
|
pub struct Key<T> {
|
||||||
|
/// f32 at which the `Key` should be reached.
|
||||||
|
pub t: f32,
|
||||||
|
/// Actual value.
|
||||||
|
pub value: T,
|
||||||
|
/// Interpolation mode.
|
||||||
|
pub interpolation: Interpolation
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Key<T> {
|
||||||
|
/// Create a new key.
|
||||||
|
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
|
||||||
|
Key {
|
||||||
|
t: t,
|
||||||
|
value: value,
|
||||||
|
interpolation: interpolation
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Interpolation mode.
|
||||||
|
#[derive(Copy, Clone, Debug)]
|
||||||
|
pub enum Interpolation {
|
||||||
|
/// Hold a `Key` until the time passes the normalized step threshold, in which case the next
|
||||||
|
/// key is used.
|
||||||
|
///
|
||||||
|
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
|
||||||
|
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||||
|
/// first key will be kept until the next key.*
|
||||||
|
Step(f32),
|
||||||
|
/// Linear interpolation between a key and the next one.
|
||||||
|
Linear,
|
||||||
|
/// Cosine interpolation between a key and the next one.
|
||||||
|
Cosine,
|
||||||
|
/// Catmull-Rom interpolation.
|
||||||
|
CatmullRom
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Default for Interpolation {
|
||||||
|
/// `Interpolation::Linear` is the default.
|
||||||
|
fn default() -> Self {
|
||||||
|
Interpolation::Linear
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Spline curve used to provide interpolation between control points (keys).
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct Spline<T>(Vec<Key<T>>);
|
||||||
|
|
||||||
|
impl<T> Spline<T> {
|
||||||
|
/// Create a new spline out of keys. The keys don’t have to be sorted because they’re sorted by
|
||||||
|
/// this function.
|
||||||
|
pub fn from_keys(mut keys: Vec<Key<T>>) -> Self {
|
||||||
|
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||||
|
|
||||||
|
Spline(keys)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Retrieve the keys of a spline.
|
||||||
|
pub fn keys(&self) -> &[Key<T>] {
|
||||||
|
&self.0
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time.
|
||||||
|
///
|
||||||
|
/// # Return
|
||||||
|
///
|
||||||
|
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||||||
|
/// happen if you try to sample between two keys with a specific interpolation mode that make the
|
||||||
|
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||||||
|
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||||||
|
/// sampling.
|
||||||
|
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
|
||||||
|
let first = self.0.first().unwrap();
|
||||||
|
let last = self.0.last().unwrap();
|
||||||
|
|
||||||
|
if t <= first.t {
|
||||||
|
return Some(first.value);
|
||||||
|
} else if t >= last.t {
|
||||||
|
return Some(last.value);
|
||||||
|
}
|
||||||
|
|
||||||
|
let keys = &self.0;
|
||||||
|
let i = keys.binary_search_by(|key| key.t.partial_cmp(&t).unwrap_or(Ordering::Less)).ok()?;
|
||||||
|
|
||||||
|
let cp0 = &keys[i];
|
||||||
|
|
||||||
|
match cp0.interpolation {
|
||||||
|
Interpolation::Step(threshold) => {
|
||||||
|
let cp1 = &keys[i+1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||||
|
},
|
||||||
|
Interpolation::Linear => {
|
||||||
|
let cp1 = &keys[i+1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
|
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||||
|
},
|
||||||
|
Interpolation::Cosine => {
|
||||||
|
let cp1 = &keys[i+1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let cos_nt = (1. - f32::cos(nt * consts::PI)) * 0.5;
|
||||||
|
|
||||||
|
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||||
|
},
|
||||||
|
Interpolation::CatmullRom => {
|
||||||
|
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||||||
|
// None.
|
||||||
|
if i == 0 || i >= keys.len() - 2 {
|
||||||
|
None
|
||||||
|
} else {
|
||||||
|
let cp1 = &keys[i+1];
|
||||||
|
let cpm0 = &keys[i-1];
|
||||||
|
let cpm1 = &keys[i+2];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
|
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Iterator over spline keys.
|
||||||
|
pub struct SplineIterator<'a, T> where T: 'a {
|
||||||
|
anim_param: &'a Spline<T>,
|
||||||
|
i: usize
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T> Iterator for SplineIterator<'a, T> {
|
||||||
|
type Item = &'a Key<T>;
|
||||||
|
|
||||||
|
fn next(&mut self) -> Option<Self::Item> {
|
||||||
|
let r = self.anim_param.0.get(self.i);
|
||||||
|
|
||||||
|
if let Some(_) = r {
|
||||||
|
self.i += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
r
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T> IntoIterator for &'a Spline<T> {
|
||||||
|
type Item = &'a Key<T>;
|
||||||
|
type IntoIter = SplineIterator<'a, T>;
|
||||||
|
|
||||||
|
fn into_iter(self) -> Self::IntoIter {
|
||||||
|
SplineIterator {
|
||||||
|
anim_param: self,
|
||||||
|
i: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||||
|
/// sampling on splines.
|
||||||
|
pub trait Interpolate: Copy {
|
||||||
|
/// Linear interpolation.
|
||||||
|
fn lerp(a: Self, b: Self, t: f32) -> Self;
|
||||||
|
/// Cubic hermite interpolation.
|
||||||
|
///
|
||||||
|
/// Default to `Self::lerp`.
|
||||||
|
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
|
||||||
|
Self::lerp(a.0, b.0, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Interpolate for f32 {
|
||||||
|
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||||
|
a * (1. - t) + b * t
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||||||
|
cubic_hermite(x, a, b, y, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Default implementation of Interpolate::cubic_hermit.
|
||||||
|
pub fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
|
||||||
|
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
|
||||||
|
// time stuff
|
||||||
|
let t2 = t * t;
|
||||||
|
let t3 = t2 * t;
|
||||||
|
let two_t3 = 2. * t3;
|
||||||
|
let three_t2 = 3. * t2;
|
||||||
|
|
||||||
|
// tangents
|
||||||
|
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||||||
|
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||||||
|
|
||||||
|
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Normalize a time ([0;1]) given two control points.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
|
||||||
|
assert!(cp1.t != cp.t);
|
||||||
|
|
||||||
|
(t - cp.t) / (cp1.t - cp.t)
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user