Writing the front page documentation.

This commit is contained in:
Dimitri Sabadie 2018-08-05 01:12:22 +02:00
commit 81ffaa8fbf
No known key found for this signature in database
GPG Key ID: DE58C386A8DB2883
4 changed files with 279 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
/target
**/*.rs.bk
Cargo.lock

17
.travis.yml Normal file
View File

@ -0,0 +1,17 @@
language: rust
rust:
- stable
- beta
- nightly
os:
- linux
- osx
script:
- rustc --version
- cargo --version
- cargo build --verbose
- cargo test --lib --verbose
- cd examples && cargo check --verbose

20
Cargo.toml Normal file
View File

@ -0,0 +1,20 @@
[package]
name = "splines"
version = "0.1.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
keywords = ["spline", "interpolation"]
categories = ["science"]
homepage = "https://github.com/phaazon/spline"
repository = "https://github.com/phaazon/spline"
documentation = "https://docs.rs/spline"
readme = "README.md"
[badges]
travis-ci = { repository = "phaazon/spline", branch = "master" }
is-it-maintained-issue-resolution = { repository = "phaazon/spline" }
is-it-maintained-open-issues = { repository = "phaazon/spline" }
maintenance = { status = "actively-developed" }
[dependencies]

239
src/lib.rs Normal file
View File

@ -0,0 +1,239 @@
//! Spline interpolation made easy.
//!
//! This crate exposes splines for which each sections can be interpolated independently of each
//! other i.e. its possible to interpolate with a linear interpolator on one section and then
//! switch to a cube Hermite interpolatior for the next section.
//!
//! Most of the library consists of three types:
//!
//! - [`Key`], which represents the control points by which the spline must pass.
//! - [`Interpolation`], the type of possible interpolation for each segment.
//! - [`Spline`], a spline from which you can *sample* points by interpolation.
//!
//! When adding control points, you add new sections. Two control points define a section i.e.
//! its not possible to define a spline without at least two control points. Every time you add a
//! new control point, a new section is created. Each section is assigned an interpolation mode that
//! is picked from its lower control point.
//!
//! ```
//! use splines::{Interpolation, Key, Spline};
//!
//! let start = Key::new(0., 0., Interpolation::Linear);
//! let end = Key::new(1., 10., Interpolation::Linear);
//! let spline = Spline::from_keys(vec![start, end]);
//!
//! assert_eq!(spline.sample(0.), Some(0.));
//! assert_eq!(spline.sample(1.), Some(10.));
//! ```
use std::cmp::Ordering;
use std::f32::consts;
use std::ops::{Add, Div, Mul, Sub};
/// A spline control point.
///
/// This type associates a value at a given time. It also contains an interpolation object used to
/// determine how to interpolate values on the segment defined by this key and the next one.
#[derive(Copy, Clone, Debug)]
pub struct Key<T> {
/// f32 at which the `Key` should be reached.
pub t: f32,
/// Actual value.
pub value: T,
/// Interpolation mode.
pub interpolation: Interpolation
}
impl<T> Key<T> {
/// Create a new key.
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
Key {
t: t,
value: value,
interpolation: interpolation
}
}
}
/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
pub enum Interpolation {
/// Hold a `Key` until the time passes the normalized step threshold, in which case the next
/// key is used.
///
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// first key will be kept until the next key.*
Step(f32),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation.
CatmullRom
}
impl Default for Interpolation {
/// `Interpolation::Linear` is the default.
fn default() -> Self {
Interpolation::Linear
}
}
/// Spline curve used to provide interpolation between control points (keys).
#[derive(Debug, Clone)]
pub struct Spline<T>(Vec<Key<T>>);
impl<T> Spline<T> {
/// Create a new spline out of keys. The keys dont have to be sorted because theyre sorted by
/// this function.
pub fn from_keys(mut keys: Vec<Key<T>>) -> Self {
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T>] {
&self.0
}
/// Sample a spline at a given time.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that make the
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling.
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
let first = self.0.first().unwrap();
let last = self.0.last().unwrap();
if t <= first.t {
return Some(first.value);
} else if t >= last.t {
return Some(last.value);
}
let keys = &self.0;
let i = keys.binary_search_by(|key| key.t.partial_cmp(&t).unwrap_or(Ordering::Less)).ok()?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
},
Interpolation::Linear => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
},
Interpolation::Cosine => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (1. - f32::cos(nt * consts::PI)) * 0.5;
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
},
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
}
}
}
/// Iterator over spline keys.
pub struct SplineIterator<'a, T> where T: 'a {
anim_param: &'a Spline<T>,
i: usize
}
impl<'a, T> Iterator for SplineIterator<'a, T> {
type Item = &'a Key<T>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.anim_param.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T> IntoIterator for &'a Spline<T> {
type Item = &'a Key<T>;
type IntoIter = SplineIterator<'a, T>;
fn into_iter(self) -> Self::IntoIter {
SplineIterator {
anim_param: self,
i: 0
}
}
}
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
pub trait Interpolate: Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: f32) -> Self;
/// Cubic hermite interpolation.
///
/// Default to `Self::lerp`.
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
Self::lerp(a.0, b.0, t)
}
}
impl Interpolate for f32 {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
// Default implementation of Interpolate::cubic_hermit.
pub fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
// time stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = 2. * t3;
let three_t2 = 3. * t2;
// tangents
let m0 = (b.0 - x.0) / (b.1 - x.1);
let m1 = (y.0 - a.0) / (y.1 - a.1);
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
assert!(cp1.t != cp.t);
(t - cp.t) / (cp1.t - cp.t)
}