Add Bézier curves.
This commit is contained in:
parent
e76f18ac5b
commit
b05582d653
21
.github/workflows/ci.yaml
vendored
21
.github/workflows/ci.yaml
vendored
@ -7,27 +7,42 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose
|
||||
cargo build --verbose --features bezier
|
||||
run: cargo build --verbose
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: |
|
||||
cargo test --verbose
|
||||
cargo test --verbose --features bezier
|
||||
|
||||
build-windows:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose
|
||||
cargo build --verbose --features bezier
|
||||
run: cargo build --verbose
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: |
|
||||
cargo test --verbose
|
||||
cargo test --verbose --features bezier
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose
|
||||
cargo build --verbose --features bezier
|
||||
run: cargo build --verbose
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: |
|
||||
cargo test --verbose
|
||||
cargo test --verbose --features bezier
|
||||
|
||||
check-readme:
|
||||
runs-on: ubuntu-latest
|
||||
|
@ -21,6 +21,7 @@ maintenance = { status = "actively-developed" }
|
||||
|
||||
[features]
|
||||
default = ["std"]
|
||||
bezier = []
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
|
@ -57,6 +57,12 @@ pub trait Interpolate<T>: Sized + Copy {
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
}
|
||||
|
||||
/// Set of types that support additions and subtraction.
|
||||
@ -212,6 +218,31 @@ where V: Linear<T>,
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
@ -222,6 +253,14 @@ macro_rules! impl_interpolate_simple {
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -229,19 +268,27 @@ macro_rules! impl_interpolate_simple {
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
//macro_rules! impl_interpolate_via {
|
||||
// ($t:ty, $v:ty) => {
|
||||
// impl Interpolate<$t> for $v {
|
||||
// fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
// a * (1. - t as $v) + b * t as $v
|
||||
// }
|
||||
//
|
||||
// fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
// cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
// }
|
||||
//
|
||||
// fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
// $t::quadratic_bezier(a as $t, u as $t, b as $t, t)
|
||||
// }
|
||||
//
|
||||
// fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
// $t::cubic_bezier(a as $t, u as $t, v as $t, b as $t, t)
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//impl_interpolate_via!(f32, f64);
|
||||
//impl_interpolate_via!(f64, f32);
|
||||
|
@ -8,7 +8,7 @@
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
@ -24,10 +24,29 @@ pub enum Interpolation<T> {
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom
|
||||
CatmullRom,
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||
/// cases are possible:
|
||||
///
|
||||
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||
/// kicks ass.
|
||||
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
#[cfg(feature = "bezier")]
|
||||
Bezier(V),
|
||||
#[cfg(not(any(feature = "bezier")))]
|
||||
#[doc(hidden)]
|
||||
_V(std::marker::PhantomData<V>),
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
|
@ -26,12 +26,12 @@ pub struct Key<T, V> {
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
pub interpolation: Interpolation<T, V>
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
25
src/lib.rs
25
src/lib.rs
@ -85,20 +85,25 @@
|
||||
//! So here’s a list of currently supported features and how to enable them:
|
||||
//!
|
||||
//! - **Serialization / deserialization.**
|
||||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! types exported by this crate.
|
||||
//! + Enable with the `"serialization"` feature.
|
||||
//! - Enable with the `"serialization"` feature.
|
||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! + Enable with the `"impl-cgmath"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! - Enable with the `"impl-cgmath"` feature.
|
||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! + Enable with the `"impl-nalgebra"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! - Enable with the `"impl-nalgebra"` feature.
|
||||
//! - **Standard library / no standard library.**
|
||||
//! + It’s possible to compile against the standard library or go on your own without it.
|
||||
//! + Compiling with the standard library is enabled by default.
|
||||
//! + Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! + Enable explicitly with the `"std"` feature.
|
||||
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||
//! - Compiling with the standard library is enabled by default.
|
||||
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! - Enable explicitly with the `"std"` feature.
|
||||
//! - **Extra interpolation modes.**
|
||||
//! - In order not to introduce breaking changes, some feature-gates are added to augment the
|
||||
//! [`Interpolation`] enum.
|
||||
//!
|
||||
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
|
@ -128,6 +128,27 @@ impl<T, V> Spline<T, V> {
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
Interpolation::Bezier(u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
||||
//let one_nt = T::one() - nt;
|
||||
//let one_nt_2 = one_nt * one_nt;
|
||||
//let one_nt_3 = one_nt_2 * one_nt;
|
||||
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
||||
//let r = cp0.value * one_nt_3;
|
||||
} else {
|
||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(any(feature = "bezier")))]
|
||||
Interpolation::_V(_) => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user