Compare commits

..

No commits in common. "master" and "3.0.0" have entirely different histories.

20 changed files with 613 additions and 778 deletions

View File

@ -1,25 +0,0 @@
version: 2
updates:
- package-ecosystem: cargo
directory: "/."
schedule:
interval: daily
time: "04:00"
open-pull-requests-limit: 10
target-branch: master
reviewers:
- phaazon
assignees:
- phaazon
labels:
- dependency-update
ignore:
- dependency-name: glam
versions:
- 0.13.0
- dependency-name: nalgebra
versions:
- 0.25.0
- dependency-name: cgmath
versions:
- 0.18.0

View File

@ -1,38 +1,50 @@
name: CI
on: [push, pull_request]
on: [push]
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: cargo test --verbose --all-features
run: |
cargo test --verbose --all-features
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: cargo test --verbose --all-features
run: |
cargo test --verbose --all-features
build-macosx:
runs-on: macOS-latest
steps:
- uses: actions/checkout@v1
- name: Rust requirements
run: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile=minimal
- name: Build
run: |
. ~/.cargo/env
cargo build --verbose --all-features
- name: Test
run: cargo test --verbose --all-features
run: |
. ~/.cargo/env
cargo test --verbose --all-features
quality:
check-readme:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Install dependencies
run: |
cargo install --force cargo-sync-readme
rustup component add rustfmt
- name: cargo sync-readme
run: |
cargo sync-readme -c
- name: rustfmt
run: cargo fmt -- --check
- name: Install cargo-sync-readme
run: cargo install --force cargo-sync-readme
- name: Check
run: cargo sync-readme -c

View File

@ -1,208 +1,6 @@
# Changelog
# 3.0.0
* [4.3.1](#431)
* [4.3](#43)
* [4.2](#42)
* [4.1.1](#411)
* [4.1](#41)
* [4.0.3](#403)
* [4.0.2](#402)
* [4.0.1](#401)
* [4.0](#40)
* [Major changes](#major-changes)
* [Patch changes](#patch-changes)
* [3.5.4](#354)
* [3.5.3](#353)
* [3.5.2](#352)
* [3.5.1](#351)
* [3.5](#35)
* [3.4.2](#342)
* [3.4.1](#341)
* [3.4](#34)
* [3.3](#33)
* [3.2](#32)
* [3.1](#31)
* [3.0](#30)
* [Major changes](#major-changes-1)
* [Patch changes](#patch-changes-1)
* [2.2](#22)
* [2.1.1](#211)
* [2.1](#21)
* [2.0.1](#201)
* [2.0](#20)
* [Major changes](#major-changes-2)
* [Minor changes](#minor-changes)
* [1.0](#10)
* [Major changes](#major-changes-3)
* [Minor changes](#minor-changes-1)
* [Patch changes](#patch-changes-2)
* [0.2.3](#023)
* [0.2.2](#022)
* [0.2.1](#021)
* [0.2](#02)
* [0.1.1](#011)
* [0.1](#01)
# 4.3.1
> Nov 22, 2023
- Add `Default` implementation for `Spline`. [c6ba847](https://github.com/phaazon/splines/commit/c6ba847)
# 4.3
> Sep 23, 2023
- Add support for `glam-0.23` and `glam-0.24`. [cdc48a4](https://github.com/phaazon/splines/commit/cdc48a4)
- Add `Spline::clear` to clear a spline keys without deallocating its internal storage. [eca09f1](https://github.com/phaazon/splines/commit/eca09f1)
# 4.2
> Feb 1, 2023
- Add support for `glam-0.22`.
- Add support for `nalgebra-0.32`.
- Add deprecation lints for `impl-*` feature gates. Those shouldnt be used anymore and the `*` variant should be
preferred. For instance, if you used `impl-cgmath`, you should just use the `cgmath` feature gate now.
# 4.1.1
> Jul 27, 2022
- Internal enhancement of sampling splines by looking for control points. That brings the lookup from _O(N)_ to
_O(log(N))_. That is super embarassing because it should have been the default from the very first commit. Sorry
about that.
- Fix hermite cubic interpolation.
- Add support for `glam-0.21`.
- Add support for `nalgebra-0.31`.
# 4.1
> Mar 28, 2022
- Support for edition 2021.
- Bump `float-cmp` dependency.
- Bump `glam` dependency.
- Bump `nalgebra` dependency.
- Simplify the CI.
# 4.0.3
> Jul 11, 2021
- Add more implementors for `Interpolate`.
# 4.0.2
> Jul 11, 2021
- **Yanked.**
# 4.0.1
> Jul 11, 2021
- Add support up to `glam-0.17`.
- Add support up to `nalgebra-0.27`.
- Replace the name of some feature gates:
- `serialization` becomes `serde`.
- `impl-*` becomes `*`.
- The previous feature gates are kept around to prevent a breaking change but will eventually be removed in the next
major update.
# 4.0
> Mar 05, 2021
## Major changes
- Switch the `Interpolation` enum to `#[non_exhaustive]` to allow adding more interpolation modes (if any) in the
future.
- Introduce `SampledWithKey`, which is a more elegant / typed way to access a sample along with its associated key
index.
- Refactor the `Interpolate` trait and add the `Interpolator` trait.
## Patch changes
- Highly simplify the various implementors (`cgmath`, `nalgebra` and `glam`) so that maintenance is easy.
- Expose the `impl_Interpolate` macro, allowing to implement the API all at once if a type implements the various
`std::ops:*` traits. Since most of the crates do, this macro makes it really easy to add support for a crate.
- Drop `simba` as a direct dependency.
- Drop `num-traits` as a direct dependency.
# 3.5.4
> Feb 27, 2021
- Support of `cgmath-0.18`.
# 3.5.3
> Jan 16, 2021
- Resynchronize and fix links in the README (fix in `cargo sync-readme`).
# 3.5.2
> Fri Jan 01, 2021
- Support of `nalgebra-0.24`.
# 3.5.1
> Dec 5th, 2020
- Support of `glam-0.11`.
# 3.5
> Nov 23rd, 2020
- Add support for [glam](https://crates.io/crates/glam) via the `"impl-glam"` feature gate.
- Support of `nalgebra-0.23`.
# 3.4.2
> Oct 24th, 2020
- Support of `simba-0.3`.
# 3.4.1
> Sep 5th, 2020
- Support of `simba-0.2`.
- Support of `nalgebra-0.22`.
# 3.4
> Thu May 21st 2020
- Add support for `float-cmp-0.7` and `float-cmp-0.8`. Because this uses a SemVer range, if you
already have a `Cargo.lock`, dont forget to update `splines` with `cargo update --aggressive`.
# 3.3
> Thu Apr 10th 2020
- Add support for `nalgebra-0.21`.
# 3.2
> Thu Mar 19th 2020
- Add support for `nalgebra-0.20`.
- Add support for `float-cmp-0.6`.
# 3.1
> Sat Jan 26th 2020
- Add support for `nalgebra-0.19`.
# 3.0
> Tue Oct 22th 2019
> Sun Oct 20th 2019
## Major changes
@ -213,7 +11,7 @@
- Fix Bézier interpolation when the next key is Bézier too.
# 2.2
# 2.2.0
> Mon Oct 17th 2019
@ -241,7 +39,7 @@
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
next keys tangent around its control point.
# 2.0
# 2.0.0
> Mon Sep 23rd 2019

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "4.3.1"
version = "3.0.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -11,32 +11,39 @@ repository = "https://github.com/phaazon/splines"
documentation = "https://docs.rs/splines"
readme = "README.md"
edition = "2021"
edition = "2018"
[badges]
travis-ci = { repository = "phaazon/splines", branch = "master" }
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
is-it-maintained-open-issues = { repository = "phaazon/splines" }
maintenance = { status = "actively-developed" }
[features]
default = ["std"]
impl-cgmath = ["cgmath"]
impl-glam = ["glam"]
impl-nalgebra = ["nalgebra"]
serialization = ["serde"]
std = ["nalgebra/std"]
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
serialization = ["serde", "serde_derive"]
std = []
[dependencies]
cgmath = { version = ">=0.17, <0.19", optional = true }
glam = { version = ">=0.10, <0.25", optional = true }
nalgebra = { version = ">=0.21, <0.33", default-features = false, optional = true }
serde = { version = "1", features = ["derive"], optional = true }
alga = { version = "0.9", optional = true }
cgmath = { version = "0.17", optional = true }
nalgebra = { version = ">=0.14, <0.19", optional = true }
num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }
[dev-dependencies]
float-cmp = ">=0.6, < 0.10"
float-cmp = "0.5"
serde_json = "1"
[package.metadata.docs.rs]
features = ["std", "cgmath", "glam", "nalgebra", "serde"]
all-features = true
[[example]]
name = "hello-world"
[[example]]
name = "serialization"
required-features = ["serde"]
required-features = ["serialization"]

View File

@ -24,7 +24,7 @@ is picked from its lower control point.
# Quickly create splines
```rust
```
use splines::{Interpolation, Key, Spline};
let start = Key::new(0., 0., Interpolation::Linear);
@ -46,7 +46,7 @@ value.
If you try to sample in out-of-bounds sampling parameter, youll get no value.
```rust
```
assert_eq!(spline.sample(0.), Some(0.));
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample(1.1), None);
@ -56,7 +56,7 @@ Its possible that you want to get a value even if youre out-of-bounds. Thi
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
that purpose.
```rust
```
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
```
@ -66,7 +66,7 @@ assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
kind of type; that type must, however, implement a contract defined by a set of traits to
implement. See [the documentation of this module](https://docs.rs/splines/latest/splines/interpolate/) for further details.
implement. See [the documentation of this module](crate::interpolate) for further details.
# Features and customization
@ -83,19 +83,16 @@ not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serde.**
- **Serialization / deserialization.**
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
- Enable with the `"serde"` feature.
- Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"cgmath"` feature.
- **[glam](https://crates.io/crates/glam) implementors.**
- Adds some useful implementations of `Interpolate` for some glam types.
- Enable with the `"glam"` feature.
- Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"nalgebra"` feature.
- Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.

View File

@ -3,10 +3,7 @@ extern crate splines;
use splines::{Interpolation, Key, Spline};
fn main() {
let keys = vec![
Key::new(0., 0., Interpolation::default()),
Key::new(5., 1., Interpolation::default()),
];
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
let spline = Spline::from_vec(keys);
println!("value at 0: {:?}", spline.clamped_sample(0.));

View File

@ -1,5 +1,4 @@
#[macro_use]
extern crate serde_json;
#[macro_use] extern crate serde_json;
extern crate splines;
use serde_json::from_value;

View File

@ -1,15 +0,0 @@
edition = "2018"
fn_params_layout = "Tall"
force_explicit_abi = true
hard_tabs = false
max_width = 100
merge_derives = true
newline_style = "Unix"
remove_nested_parens = true
reorder_imports = true
reorder_modules = true
tab_spaces = 2
use_field_init_shorthand = true
use_small_heuristics = "Default"
use_try_shorthand = true

View File

@ -1,15 +1,86 @@
use crate::impl_Interpolate;
use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use cgmath::{Quaternion, Vector1, Vector2, Vector3, Vector4};
use crate::interpolate::{
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
impl_Interpolate!(f32, Vector1<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Vector2<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Vector3<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Vector4<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Quaternion<f32>, std::f32::consts::PI);
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
impl_Interpolate!(f64, Vector1<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Vector2<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Vector3<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Vector4<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Quaternion<f64>, std::f64::consts::PI);
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for $($t)*<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.lerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_vec!(Vector1);
impl_interpolate_vec!(Vector2);
impl_interpolate_vec!(Vector3);
impl_interpolate_vec!(Vector4);
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

View File

@ -1,8 +0,0 @@
use crate::impl_Interpolate;
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
impl_Interpolate!(f32, Vec2, std::f32::consts::PI);
impl_Interpolate!(f32, Vec3, std::f32::consts::PI);
impl_Interpolate!(f32, Vec3A, std::f32::consts::PI);
impl_Interpolate!(f32, Vec4, std::f32::consts::PI);
impl_Interpolate!(f32, Quat, std::f32::consts::PI);

View File

@ -28,220 +28,267 @@
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits
#[cfg(not(feature = "std"))]
use core::f32;
#[cfg(not(feature = "std"))]
use core::f64;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf32;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf64;
#[cfg(not(feature = "std"))]
use core::ops::{Add, Mul, Sub};
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use std::f64;
#[cfg(feature = "std")] use std::f32;
#[cfg(not(feature = "std"))] use core::f32;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
#[cfg(feature = "std")] use std::f64;
#[cfg(not(feature = "std"))] use core::f64;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
/// Types that can be used as interpolator in splines.
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
///
/// An interpolator value is like the fabric on which control keys (and sampled values) live on.
pub trait Interpolator: Sized + Copy + PartialOrd {
/// Normalize the interpolator.
fn normalize(self, start: Self, end: Self) -> Self;
}
macro_rules! impl_Interpolator {
($t:ty) => {
impl Interpolator for $t {
fn normalize(self, start: Self, end: Self) -> Self {
(self - start) / (end - start)
}
}
};
}
impl_Interpolator!(f32);
impl_Interpolator!(f64);
/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines.
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
/// instance to know which trait your type must implement to be usable.
///
/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like.
pub trait Interpolate<T>: Sized + Copy {
/// Step interpolation.
fn step(t: T, threshold: T, a: Self, b: Self) -> Self;
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
/// Linear interpolation.
fn lerp(t: T, a: Self, b: Self) -> Self;
/// Cosine interpolation.
fn cosine(t: T, a: Self, b: Self) -> Self;
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self;
///
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
///
/// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve.
fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self;
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// Set of types that support additions and subtraction.
///
/// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the
/// input tangent of `b` to the curve.
fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
/// Cubic Bézier interpolation special case for non-explicit second tangent.
///
/// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by
/// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are
/// mirrored for the same key).
fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
/// The [`Copy`] trait is also a supertrait as its likely to be used everywhere.
pub trait Additive:
Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
#[macro_export]
macro_rules! impl_Interpolate {
($t:ty, $v:ty, $pi:expr) => {
impl $crate::interpolate::Interpolate<$t> for $v {
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
if t < threshold {
a
} else {
b
impl<T> Additive for T
where T: Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
}
macro_rules! impl_linear_simple {
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
}
}
}
impl_linear_simple!(f32);
impl_linear_simple!(f64);
macro_rules! impl_linear_cast {
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
}
}
impl_linear_cast!(f32, f64);
impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
macro_rules! impl_one_float {
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
}
}
impl_one_float!(f32);
impl_one_float!(f64);
/// Types with a sane definition of π and cosine.
pub trait Trigo {
/// π.
fn pi() -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
}
impl Trigo for f32 {
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
fn cosine(t: $t, a: Self, b: Self) -> Self {
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
}
#[cfg(not(feature = "std"))]
fn cosine(t: $t, a: Self, b: Self) -> Self {
unimplemented!();
{
self.cos()
}
fn lerp(t: $t, a: Self, b: Self) -> Self {
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
}
}
impl Trigo for f64 {
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
}
}
/// Default implementation of [`Interpolate::cubic_hermite`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
// sampler stuff
let two_t = t * 2.;
let three_t = t * 3.;
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t2 * two_t;
let two_t2 = t * two_t;
let three_t2 = t * three_t;
// tangents
let m0 = (b.1 - x.1) / (b.0 - x.0) * (b.0 - a.0);
let m1 = (y.1 - a.1) / (y.0 - a.0) * (b.0 - a.0);
a.1 * (two_t3 - three_t2 + 1.)
+ m0 * (t3 - two_t2 + t)
+ b.1 * (three_t2 - two_t3)
+ m1 * (t3 - t2)
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
let one_t = 1. - t;
let one_t2 = one_t * one_t;
u + (a - u) * one_t2 + (b - u) * t * t
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
let one_t = 1. - t;
let one_t2 = one_t * one_t;
let one_t3 = one_t2 * one_t;
let t2 = t * t;
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
}
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
};
}
#[macro_export]
macro_rules! impl_InterpolateT {
($t:ty, $v:ty, $pi:expr) => {
impl $crate::interpolate::Interpolate<$t> for $v {
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
if t < threshold {
a
} else {
b
}
}
#[cfg(feature = "std")]
fn cosine(t: $t, a: Self, b: Self) -> Self {
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
}
#[cfg(not(feature = "std"))]
fn cosine(t: $t, a: Self, b: Self) -> Self {
unimplemented!()
impl_interpolate_simple!(f32);
impl_interpolate_simple!(f64);
macro_rules! impl_interpolate_via {
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
fn lerp(t: $t, a: Self, b: Self) -> Self {
let t = Self::from(t);
a * (1. - t) + b * t
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
// sampler stuff
let t = Self::from(t);
let two_t = t * 2.;
let three_t = t * 3.;
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t2 * two_t;
let two_t2 = t * two_t;
let three_t2 = t * three_t;
// tangents
let m0 = (b.1 - x.1) / (Self::from(b.0 - x.0)) * (Self::from(b.0 - a.0));
let m1 = (y.1 - a.1) / (Self::from(y.0 - a.0)) * (Self::from(b.0 - a.0));
a.1 * (two_t3 - three_t2 + 1.)
+ m0 * (t3 - two_t2 + t)
+ b.1 * (three_t2 - two_t3)
+ m1 * (t3 - t2)
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
let t = Self::from(t);
let one_t = 1. - t;
let one_t2 = one_t * one_t;
u + (a - u) * one_t2 + (b - u) * t * t
}
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
let t = Self::from(t);
let one_t = 1. - t;
let one_t2 = one_t * one_t;
let one_t3 = one_t2 * one_t;
let t2 = t * t;
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
}
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
}
};
}
impl_Interpolate!(f32, f32, f32::consts::PI);
impl_Interpolate!(f64, f64, f64::consts::PI);
impl_InterpolateT!(f32, f64, f32::consts::PI);
impl_interpolate_via!(f32, f64);
impl_interpolate_via!(f64, f32);

View File

@ -1,18 +1,13 @@
//! Available interpolation modes.
#[cfg(any(feature = "serialization", feature = "serde"))]
use serde::{Deserialize, Serialize};
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[non_exhaustive]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(
any(feature = "serialization", feature = "serde"),
derive(Deserialize, Serialize),
serde(rename_all = "snake_case")
)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
@ -24,16 +19,12 @@ pub enum Interpolation<T, V> {
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
@ -49,7 +40,6 @@ pub enum Interpolation<T, V> {
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
///
/// With this kind of interpolation, a control point has an input tangent, which has the same role
@ -62,6 +52,8 @@ pub enum Interpolation<T, V> {
///
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
StrokeBezier(V, V),
#[doc(hidden)]
__NonExhaustive
}
impl<T, V> Default for Interpolation<T, V> {

View File

@ -11,13 +11,9 @@ use crate::{Key, Spline};
/// Iterator over spline keys.
///
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V>
where
T: 'a,
V: 'a,
{
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
spline: &'a Spline<T, V>,
i: usize,
i: usize
}
impl<'a, T, V> Iterator for Iter<'a, T, V> {
@ -39,6 +35,10 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
type IntoIter = Iter<'a, T, V>;
fn into_iter(self) -> Self::IntoIter {
Iter { spline: self, i: 0 }
Iter {
spline: self,
i: 0
}
}
}

View File

@ -1,14 +1,14 @@
//! Spline control points.
//!
//! A control point associates to a “sampling value” (a.k.a. time) a carried value that can be
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
//! interpolated along the curve made by the control points.
//!
//! Splines constructed with this crate have the property that its possible to change the
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
use crate::interpolation::Interpolation;
#[cfg(any(feature = "serialization", feature = "serde"))]
use serde::{Deserialize, Serialize};
/// A spline control point.
///
@ -18,27 +18,20 @@ use serde::{Deserialize, Serialize};
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(
any(feature = "serialization", feature = "serde"),
derive(Deserialize, Serialize),
serde(rename_all = "snake_case")
)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>,
pub interpolation: Interpolation<T, V>
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key {
t,
value,
interpolation,
}
Key { t, value, interpolation }
}
}

View File

@ -84,19 +84,16 @@
//!
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serde.**
//! - **Serialization / deserialization.**
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! - Enable with the `"serde"` feature.
//! - Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"cgmath"` feature.
//! - **[glam](https://crates.io/crates/glam) implementors.**
//! - Adds some useful implementations of `Interpolate` for some glam types.
//! - Enable with the `"glam"` feature.
//! - Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"nalgebra"` feature.
//! - Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
@ -108,31 +105,15 @@
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
#![cfg_attr(
any(
feature = "impl-cgmath",
feature = "impl-glam",
feature = "impl-nalgebra"
),
deprecated(
since = "4.2.0",
note = "you are using an impl-* feature gate; please switch to * (e.g. impl-cgmath becomes cgmath)"
)
)]
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(not(feature = "std"))] extern crate alloc;
#[cfg(any(feature = "impl-cgmath", feature = "cgmath"))]
mod cgmath;
#[cfg(any(feature = "impl-glam", feature = "glam"))]
mod glam;
#[cfg(feature = "impl-cgmath")] mod cgmath;
pub mod interpolate;
pub mod interpolation;
pub mod iter;
pub mod key;
#[cfg(any(feature = "impl-nalgebra", feature = "nalgebra"))]
mod nalgebra;
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
pub mod spline;
pub use crate::interpolate::Interpolate;

View File

@ -1,27 +1,64 @@
#[cfg(not(feature = "std"))]
use core::f32;
#[cfg(not(feature = "std"))]
use core::f64;
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use std::f64;
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use num_traits as nt;
use std::ops::Mul;
use crate::impl_Interpolate;
use nalgebra::{Quaternion, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use crate::interpolate::{
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
impl_Interpolate!(f32, Vector1<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector2<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector3<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector4<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector5<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector6<f32>, f32::consts::PI);
impl_Interpolate!(f32, Quaternion<f32>, f32::consts::PI);
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
// implement Linear
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
impl_Interpolate!(f64, Vector1<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector2<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector3<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector4<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector5<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector6<f64>, f64::consts::PI);
impl_Interpolate!(f64, Quaternion<f64>, f64::consts::PI);
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T, V> Interpolate<T> for $($t)*<V>
where Self: Linear<T>,
T: Additive + One + Mul<T, Output = T>,
V: nt::One +
nt::Zero +
Additive +
Scalar +
ClosedAdd +
ClosedMul +
ClosedSub +
Interpolate<T> {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_vector!(Vector1);
impl_interpolate_vector!(Vector2);
impl_interpolate_vector!(Vector3);
impl_interpolate_vector!(Vector4);
impl_interpolate_vector!(Vector5);
impl_interpolate_vector!(Vector6);

View File

@ -1,19 +1,15 @@
//! Spline curves and operations.
// #[cfg(feature = "std")]
use crate::interpolate::{Interpolate, Interpolator};
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
use crate::interpolate::{Additive, Interpolate, One, Trigo};
use crate::interpolation::Interpolation;
use crate::key::Key;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
#[cfg(not(feature = "std"))]
use core::cmp::Ordering;
#[cfg(not(feature = "std"))]
use core::ops::{Div, Mul};
#[cfg(any(feature = "serialization", feature = "serde"))]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::cmp::Ordering;
/// Spline curve used to provide interpolation between control points (keys).
///
@ -27,42 +23,24 @@ use std::cmp::Ordering;
/// for the required interpolation mode, you get `None`.
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
/// or last key if out of bound; it will return `None` if not enough key.
#[derive(Debug, Clone, Default)]
#[cfg_attr(
any(feature = "serialization", feature = "serde"),
derive(Deserialize, Serialize)
)]
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self)
where
T: PartialOrd,
{
self
.0
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
fn internal_sort(&mut self) where T: PartialOrd {
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
where
T: PartialOrd,
{
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Clear the spline by removing all keys. Keeps the underlying allocated storage, so adding
/// new keys should be faster than creating a new [`Spline`]
#[inline]
pub fn clear(&mut self) {
self.0.clear()
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
@ -70,11 +48,7 @@ impl<T, V> Spline<T, V> {
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self
where
I: Iterator<Item = Key<T, V>>,
T: PartialOrd,
{
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
Self::from_vec(iter.collect())
}
@ -110,38 +84,38 @@ impl<T, V> Spline<T, V> {
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
pub fn sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
where
T: Interpolator,
V: Interpolate<T>,
{
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T> {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
let value = match cp0.interpolation {
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::step(nt, threshold, cp0.value, cp1.value);
let nt = normalize_time(t, cp0, cp1);
let value = if nt < threshold { cp0.value } else { cp1.value };
Some(value)
Some((value, cp0, Some(cp1)))
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::lerp(nt, cp0.value, cp1.value);
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Some(value)
Some((value, cp0, Some(cp1)))
}
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::cosine(nt, cp0.value, cp1.value);
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Some(value)
Some((value, cp0, Some(cp1)))
}
Interpolation::CatmullRom => {
@ -153,47 +127,44 @@ impl<T, V> Spline<T, V> {
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::cubic_hermite(
nt,
(cpm0.t, cpm0.value),
(cp0.t, cp0.value),
(cp1.t, cp1.value),
(cpm1.t, cpm1.value),
);
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
Some(value)
Some((value, cp0, Some(cp1)))
}
}
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let nt = normalize_time(t, cp0, cp1);
let value = match cp1.interpolation {
Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value),
Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value),
_ => V::quadratic_bezier(nt, cp0.value, u, cp1.value),
};
Some(value)
let value =
match cp1.interpolation {
Interpolation::Bezier(v) => {
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
}
Interpolation::StrokeBezier(v, _) => {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
}
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
};
value.map(|value| SampledWithKey { value, key: i })
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where
T: Interpolator,
V: Interpolate<T>,
{
self.sample_with_key(t).map(|sampled| sampled.value)
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T> {
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
@ -207,33 +178,23 @@ impl<T, V> Spline<T, V> {
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
where
T: Interpolator,
V: Interpolate<T>,
{
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
let sampled = SampledWithKey {
value: first.value,
key: 0,
};
Some(sampled)
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
if t >= last.t {
let sampled = SampledWithKey {
value: last.value,
key: self.0.len() - 1,
};
Some(sampled)
Some((last.value, &last, None))
} else {
None
}
@ -243,18 +204,13 @@ impl<T, V> Spline<T, V> {
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where
T: Interpolator,
V: Interpolate<T>,
{
self.clamped_sample_with_key(t).map(|sampled| sampled.value)
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T> {
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>)
where
T: PartialOrd,
{
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);
self.internal_sort();
}
@ -277,10 +233,14 @@ impl<T, V> Spline<T, V> {
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
pub fn replace<F>(
&mut self,
index: usize,
f: F
) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd,
T: PartialOrd
{
let key = self.remove(index)?;
self.add(f(&key));
@ -296,27 +256,16 @@ impl<T, V> Spline<T, V> {
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation,
interpolation: &mut key.interpolation
})
}
}
/// A sampled value along with its key index.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct SampledWithKey<V> {
/// Sampled value.
pub value: V,
/// Key index.
pub key: usize,
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
#[derive(Debug)]
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
@ -324,21 +273,46 @@ pub struct KeyMut<'a, T, V> {
pub interpolation: &'a mut Interpolation<T, V>,
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T, V>(
t: T,
cp: &Key<T, V>,
cp1: &Key<T, V>
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
// It has the property to have a timestamp smaller or equal to t
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
where
T: PartialOrd,
{
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
match cps.binary_search_by(|key| key.t.partial_cmp(&t).unwrap()) {
Err(i) if i >= len => None,
Err(i) if i == 0 => None,
Err(i) => Some(i - 1),
Ok(i) if i == len - 1 => None,
Ok(i) => Some(i),
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}

View File

@ -1,43 +0,0 @@
#![cfg(feature = "cgmath")]
use cgmath as cg;
use splines::{Interpolation, Key, Spline};
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(0., start, end), start);
assert_eq!(Interpolate::lerp(1., start, end), end);
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
}
#[test]
fn stroke_bezier_straight() {
use float_cmp::approx_eq;
let keys = vec![
Key::new(
0.0,
cg::Vector2::new(0., 1.),
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
),
Key::new(
5.0,
cg::Vector2::new(5., 1.),
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
),
];
let spline = Spline::from_vec(keys);
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
}

View File

@ -1,4 +1,8 @@
use splines::{spline::SampledWithKey, Interpolation, Key, Spline};
use float_cmp::approx_eq;
use splines::{Interpolation, Key, Spline};
#[cfg(feature = "cgmath")] use cgmath as cg;
#[cfg(feature = "nalgebra")] use nalgebra as na;
#[test]
fn step_interpolation_f32() {
@ -13,14 +17,8 @@ fn step_interpolation_f32() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(
spline.sample_with_key(0.2),
Some(SampledWithKey { value: 10., key: 0 })
);
assert_eq!(
spline.clamped_sample_with_key(1.),
Some(SampledWithKey { value: 10., key: 1 })
);
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
@ -36,14 +34,8 @@ fn step_interpolation_f64() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(
spline.sample_with_key(0.2),
Some(SampledWithKey { value: 10., key: 0 })
);
assert_eq!(
spline.clamped_sample_with_key(1.),
Some(SampledWithKey { value: 10., key: 1 })
);
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
@ -158,6 +150,51 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[cfg(feature = "cgmath")]
#[test]
fn stroke_bezier_straight() {
let keys = vec![
Key::new(0.0, cg::Vector2::new(0., 1.), Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.))),
Key::new(5.0, cg::Vector2::new(5., 1.), Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)))
];
let spline = Spline::from_vec(keys);
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
}
#[cfg(feature = "cgmath")]
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "nalgebra")]
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[test]
fn add_key_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);

View File

@ -1,16 +0,0 @@
#![cfg(feature = "nalgebra")]
use nalgebra as na;
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(0., start, end), start);
assert_eq!(Interpolate::lerp(1., start, end), end);
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
}