#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize}; #[cfg(feature = "std")] use std::cmp::Ordering; #[cfg(not(feature = "std"))] use core::cmp::Ordering; #[cfg(not(feature = "std"))] use alloc::vec::Vec; use crate::interpolate::Interpolate; use crate::interpolation::Interpolation; use crate::key::Key; use num_traits::{Float, FloatConst}; /// Spline curve used to provide interpolation between control points (keys). #[derive(Debug, Clone)] #[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))] pub struct Spline(pub(crate) Vec>); impl Spline { /// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended /// to provide ascending sorted ones (for performance purposes). pub fn from_vec(mut keys: Vec>) -> Self where T: PartialOrd { keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less)); Spline(keys) } /// Create a new spline by consuming an `Iterater>`. They keys don’t have to be /// sorted. /// /// # Note on iterators /// /// It’s valid to use any iterator that implements `Iterator>`. However, you should /// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations. pub fn from_iter(iter: I) -> Self where I: Iterator>, T: PartialOrd { Self::from_vec(iter.collect()) } /// Retrieve the keys of a spline. pub fn keys(&self) -> &[Key] { &self.0 } /// Sample a spline at a given time. /// /// The current implementation, based on immutability, cannot perform in constant time. This means /// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)* /// performance by using a slightly different spline type. If you are interested by this feature, /// an implementation for a dedicated type is foreseen yet not started yet. /// /// # Return /// /// `None` if you try to sample a value at a time that has no key associated with. That can also /// happen if you try to sample between two keys with a specific interpolation mode that makes the /// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re /// near the beginning of the spline or its end, ensure you have enough keys around to make the /// sampling. pub fn sample(&self, t: T) -> Option where T: Float + FloatConst, V: Interpolate { let keys = &self.0; let i = search_lower_cp(keys, t)?; let cp0 = &keys[i]; match cp0.interpolation { Interpolation::Step(threshold) => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); Some(if nt < threshold { cp0.value } else { cp1.value }) } Interpolation::Linear => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); Some(Interpolate::lerp(cp0.value, cp1.value, nt)) } Interpolation::Cosine => { let two_t = T::one() + T::one(); let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); let cos_nt = (T::one() - (nt * T::PI()).cos()) / two_t; Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt)) } Interpolation::CatmullRom => { // We need at least four points for Catmull Rom; ensure we have them, otherwise, return // None. if i == 0 || i >= keys.len() - 2 { None } else { let cp1 = &keys[i+1]; let cpm0 = &keys[i-1]; let cpm1 = &keys[i+2]; let nt = normalize_time(t, cp0, cp1); Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt)) } } } } /// Sample a spline at a given time with clamping. /// /// # Return /// /// If you sample before the first key or after the last one, return the first key or the last /// one, respectively. Otherwise, behave the same way as `Spline::sample`. /// /// # Error /// /// This function returns `None` if you have no key. pub fn clamped_sample(&self, t: T) -> Option where T: Float + FloatConst, V: Interpolate { if self.0.is_empty() { return None; } self.sample(t).or_else(move || { let first = self.0.first().unwrap(); if t <= first.t { Some(first.value) } else { let last = self.0.last().unwrap(); if t >= last.t { Some(last.value) } else { None } } }) } } // Normalize a time ([0;1]) given two control points. #[inline(always)] pub(crate) fn normalize_time( t: T, cp: &Key, cp1: &Key ) -> T where T: Float { assert!(cp1.t != cp.t, "overlapping keys"); (t - cp.t) / (cp1.t - cp.t) } // Find the lower control point corresponding to a given time. fn search_lower_cp(cps: &[Key], t: T) -> Option where T: PartialOrd { let mut i = 0; let len = cps.len(); if len < 2 { return None; } loop { let cp = &cps[i]; let cp1 = &cps[i+1]; if t >= cp1.t { if i >= len - 2 { return None; } i += 1; } else if t < cp.t { if i == 0 { return None; } i -= 1; } else { break; // found } } Some(i) }