//! Spline interpolation made easy. //! //! This crate exposes splines for which each sections can be interpolated independently of each //! other – i.e. it’s possible to interpolate with a linear interpolator on one section and then //! switch to a cube Hermite interpolatior for the next section. //! //! Most of the library consists of three types: //! //! - [`Key`], which represents the control points by which the spline must pass. //! - [`Interpolation`], the type of possible interpolation for each segment. //! - [`Spline`], a spline from which you can *sample* points by interpolation. //! //! When adding control points, you add new sections. Two control points define a section – i.e. //! it’s not possible to define a spline without at least two control points. Every time you add a //! new control point, a new section is created. Each section is assigned an interpolation mode that //! is picked from its lower control point. //! //! ``` //! use splines::{Interpolation, Key, Spline}; //! //! let start = Key::new(0., 0., Interpolation::Linear); //! let end = Key::new(1., 10., Interpolation::Linear); //! let spline = Spline::from_keys(vec![start, end]); //! //! assert_eq!(spline.sample(0.), Some(0.)); //! assert_eq!(spline.sample(1.), Some(10.)); //! ``` use std::cmp::Ordering; use std::f32::consts; use std::ops::{Add, Div, Mul, Sub}; /// A spline control point. /// /// This type associates a value at a given time. It also contains an interpolation object used to /// determine how to interpolate values on the segment defined by this key and the next one. #[derive(Copy, Clone, Debug)] pub struct Key { /// f32 at which the `Key` should be reached. pub t: f32, /// Actual value. pub value: T, /// Interpolation mode. pub interpolation: Interpolation } impl Key { /// Create a new key. pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self { Key { t: t, value: value, interpolation: interpolation } } } /// Interpolation mode. #[derive(Copy, Clone, Debug)] pub enum Interpolation { /// Hold a `Key` until the time passes the normalized step threshold, in which case the next /// key is used. /// /// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half /// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the /// first key will be kept until the next key.* Step(f32), /// Linear interpolation between a key and the next one. Linear, /// Cosine interpolation between a key and the next one. Cosine, /// Catmull-Rom interpolation. CatmullRom } impl Default for Interpolation { /// `Interpolation::Linear` is the default. fn default() -> Self { Interpolation::Linear } } /// Spline curve used to provide interpolation between control points (keys). #[derive(Debug, Clone)] pub struct Spline(Vec>); impl Spline { /// Create a new spline out of keys. The keys don’t have to be sorted because they’re sorted by /// this function. pub fn from_keys(mut keys: Vec>) -> Self { keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less)); Spline(keys) } /// Retrieve the keys of a spline. pub fn keys(&self) -> &[Key] { &self.0 } /// Sample a spline at a given time. /// /// # Return /// /// `None` if you try to sample a value at a time that has no key associated with. That can also /// happen if you try to sample between two keys with a specific interpolation mode that make the /// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re /// near the beginning of the spline or its end, ensure you have enough keys around to make the /// sampling. pub fn sample(&self, t: f32) -> Option where T: Interpolate { let first = self.0.first().unwrap(); let last = self.0.last().unwrap(); if t <= first.t { return Some(first.value); } else if t >= last.t { return Some(last.value); } let keys = &self.0; let i = keys.binary_search_by(|key| key.t.partial_cmp(&t).unwrap_or(Ordering::Less)).ok()?; let cp0 = &keys[i]; match cp0.interpolation { Interpolation::Step(threshold) => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); Some(if nt < threshold { cp0.value } else { cp1.value }) }, Interpolation::Linear => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); Some(Interpolate::lerp(cp0.value, cp1.value, nt)) }, Interpolation::Cosine => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); let cos_nt = (1. - f32::cos(nt * consts::PI)) * 0.5; Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt)) }, Interpolation::CatmullRom => { // We need at least four points for Catmull Rom; ensure we have them, otherwise, return // None. if i == 0 || i >= keys.len() - 2 { None } else { let cp1 = &keys[i+1]; let cpm0 = &keys[i-1]; let cpm1 = &keys[i+2]; let nt = normalize_time(t, cp0, cp1); Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt)) } } } } } /// Iterator over spline keys. pub struct Iter<'a, T> where T: 'a { anim_param: &'a Spline, i: usize } impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a Key; fn next(&mut self) -> Option { let r = self.anim_param.0.get(self.i); if let Some(_) = r { self.i += 1; } r } } impl<'a, T> IntoIterator for &'a Spline { type Item = &'a Key; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { Iter { anim_param: self, i: 0 } } } /// Keys that can be interpolated in between. Implementing this trait is required to perform /// sampling on splines. pub trait Interpolate: Copy { /// Linear interpolation. fn lerp(a: Self, b: Self, t: f32) -> Self; /// Cubic hermite interpolation. /// /// Default to `Self::lerp`. fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self { Self::lerp(a.0, b.0, t) } } impl Interpolate for f32 { fn lerp(a: Self, b: Self, t: f32) -> Self { a * (1. - t) + b * t } fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self { cubic_hermite(x, a, b, y, t) } } // Default implementation of Interpolate::cubic_hermit. pub fn cubic_hermite(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T where T: Copy + Add + Sub + Mul + Div { // time stuff let t2 = t * t; let t3 = t2 * t; let two_t3 = 2. * t3; let three_t2 = 3. * t2; // tangents let m0 = (b.0 - x.0) / (b.1 - x.1); let m1 = (y.0 - a.0) / (y.1 - a.1); a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2) } // Normalize a time ([0;1]) given two control points. #[inline(always)] pub fn normalize_time(t: f32, cp: &Key, cp1: &Key) -> f32 { assert!(cp1.t != cp.t); (t - cp.t) / (cp1.t - cp.t) }