//! Spline curves and operations. #[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize}; #[cfg(not(feature = "std"))] use alloc::vec::Vec; #[cfg(feature = "std")] use std::cmp::Ordering; #[cfg(feature = "std")] use std::ops::{Div, Mul}; #[cfg(not(feature = "std"))] use core::ops::{Div, Mul}; #[cfg(not(feature = "std"))] use core::cmp::Ordering; use crate::interpolate::{Interpolate, Additive, One, Trigo}; use crate::interpolation::Interpolation; use crate::key::Key; /// Spline curve used to provide interpolation between control points (keys). /// /// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with /// [`Spline::from_vec`] or [`Spline::from_iter`], the keys don’t have to be sorted (they are sorted /// automatically by the sampling value). /// /// You can sample from a spline with several functions: /// /// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available /// for the required interpolation mode, you get `None`. /// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first /// or last key if out of bound; it will return `None` if not enough key. #[derive(Debug, Clone)] #[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))] pub struct Spline(pub(crate) Vec>); impl Spline { /// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended /// to provide ascending sorted ones (for performance purposes). pub fn from_vec(mut keys: Vec>) -> Self where T: PartialOrd { keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less)); Spline(keys) } /// Create a new spline by consuming an `Iterater>`. They keys don’t have to be /// sorted. /// /// # Note on iterators /// /// It’s valid to use any iterator that implements `Iterator>`. However, you should /// use [`Spline::from_vec`] if you are passing a [`Vec`]. This will remove dynamic allocations. pub fn from_iter(iter: I) -> Self where I: Iterator>, T: PartialOrd { Self::from_vec(iter.collect()) } /// Retrieve the keys of a spline. pub fn keys(&self) -> &[Key] { &self.0 } /// Number of keys. #[inline(always)] pub fn len(&self) -> usize { self.0.len() } /// Check whether the spline has no key. #[inline(always)] pub fn is_empty(&self) -> bool { self.0.is_empty() } /// Sample a spline at a given time. /// /// The current implementation, based on immutability, cannot perform in constant time. This means /// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)* /// performance by using a slightly different spline type. If you are interested by this feature, /// an implementation for a dedicated type is foreseen yet not started yet. /// /// # Return /// /// `None` if you try to sample a value at a time that has no key associated with. That can also /// happen if you try to sample between two keys with a specific interpolation mode that makes the /// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If /// you’re near the beginning of the spline or its end, ensure you have enough keys around to make /// the sampling. /// pub fn sample(&self, t: T) -> Option where T: Additive + One + Trigo + Mul + Div + PartialOrd, V: Interpolate { let keys = &self.0; let i = search_lower_cp(keys, t)?; let cp0 = &keys[i]; match cp0.interpolation { Interpolation::Step(threshold) => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); Some(if nt < threshold { cp0.value } else { cp1.value }) } Interpolation::Linear => { let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); Some(Interpolate::lerp(cp0.value, cp1.value, nt)) } Interpolation::Cosine => { let two_t = T::one() + T::one(); let cp1 = &keys[i+1]; let nt = normalize_time(t, cp0, cp1); let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t; Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt)) } Interpolation::CatmullRom => { // We need at least four points for Catmull Rom; ensure we have them, otherwise, return // None. if i == 0 || i >= keys.len() - 2 { None } else { let cp1 = &keys[i+1]; let cpm0 = &keys[i-1]; let cpm1 = &keys[i+2]; let nt = normalize_time(t, cp0, cp1); Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt)) } } } } /// Sample a spline at a given time with clamping. /// /// # Return /// /// If you sample before the first key or after the last one, return the first key or the last /// one, respectively. Otherwise, behave the same way as [`Spline::sample`]. /// /// # Error /// /// This function returns [`None`] if you have no key. pub fn clamped_sample(&self, t: T) -> Option where T: Additive + One + Trigo + Mul + Div + PartialOrd, V: Interpolate { if self.0.is_empty() { return None; } self.sample(t).or_else(move || { let first = self.0.first().unwrap(); if t <= first.t { Some(first.value) } else { let last = self.0.last().unwrap(); if t >= last.t { Some(last.value) } else { None } } }) } /// Remove a ke from the spline. pub fn remove(&mut self, index: usize) -> Option> { if index >= self.0.len() { None } else { Some(self.0.remove(index)) } } } // Normalize a time ([0;1]) given two control points. #[inline(always)] pub(crate) fn normalize_time( t: T, cp: &Key, cp1: &Key ) -> T where T: Additive + Div + PartialEq { assert!(cp1.t != cp.t, "overlapping keys"); (t - cp.t) / (cp1.t - cp.t) } // Find the lower control point corresponding to a given time. fn search_lower_cp(cps: &[Key], t: T) -> Option where T: PartialOrd { let mut i = 0; let len = cps.len(); if len < 2 { return None; } loop { let cp = &cps[i]; let cp1 = &cps[i+1]; if t >= cp1.t { if i >= len - 2 { return None; } i += 1; } else if t < cp.t { if i == 0 { return None; } i -= 1; } else { break; // found } } Some(i) }