//! The [`Interpolate`] trait and associated symbols. //! //! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be //! sampled at by interpolating in between control points. //! //! In order for a type to be used in [`Spline`], some properties must be met: //! //! - The `K` type must implement several traits: //! - [`One`], giving a neutral element for the multiplication monoid. //! - [`Additive`], making the type additive (i.e. one can add or subtract with it). //! - [`Linear`], unlocking linear combinations, required for interpolating. //! - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation. //! //! [`Interpolate`]: crate::interpolate::Interpolate //! [`Spline`]: crate::spline::Spline //! [`One`]: crate::interpolate::One //! [`Additive`]: crate::interpolate::Additive //! [`Linear`]: crate::interpolate::Linear //! [`Trigo`]: crate::interpolate::Trigo #[cfg(feature = "std")] use std::f32; #[cfg(not(feature = "std"))] use core::f32; #[cfg(not(feature = "std"))] use core::intrinsics::cosf32; #[cfg(feature = "std")] use std::f64; #[cfg(not(feature = "std"))] use core::f64; #[cfg(not(feature = "std"))] use core::intrinsics::cosf64; #[cfg(feature = "std")] use std::ops::{Add, Mul, Sub}; #[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub}; /// Keys that can be interpolated in between. Implementing this trait is required to perform /// sampling on splines. /// /// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but /// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for /// instance to know which trait your type must implement to be usable. /// /// [`Spline::sample`]: crate::spline::Spline::sample pub trait Interpolate: Sized + Copy { /// Linear interpolation. fn lerp(a: Self, b: Self, t: T) -> Self; /// Cubic hermite interpolation. /// /// Default to [`lerp`]. /// /// [`lerp`]: Interpolate::lerp fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self { Self::lerp(a.0, b.0, t) } } /// Set of types that support additions and subtraction. /// /// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere. pub trait Additive: Copy + Add + Sub { } impl Additive for T where T: Copy + Add + Sub { } /// Set of additive types that support outer multiplication and division, making them linear. pub trait Linear: Additive { /// Apply an outer multiplication law. fn outer_mul(self, t: T) -> Self; /// Apply an outer division law. fn outer_div(self, t: T) -> Self; } macro_rules! impl_linear_simple { ($t:ty) => { impl Linear<$t> for $t { fn outer_mul(self, t: $t) -> Self { self * t } /// Apply an outer division law. fn outer_div(self, t: $t) -> Self { self / t } } } } impl_linear_simple!(f32); impl_linear_simple!(f64); macro_rules! impl_linear_cast { ($t:ty, $q:ty) => { impl Linear<$t> for $q { fn outer_mul(self, t: $t) -> Self { self * t as $q } /// Apply an outer division law. fn outer_div(self, t: $t) -> Self { self / t as $q } } } } impl_linear_cast!(f32, f64); impl_linear_cast!(f64, f32); /// Types with a neutral element for multiplication. pub trait One { /// The neutral element for the multiplicative monoid — typically called `1`. fn one() -> Self; } macro_rules! impl_one_float { ($t:ty) => { impl One for $t { #[inline(always)] fn one() -> Self { 1. } } } } impl_one_float!(f32); impl_one_float!(f64); /// Types with a sane definition of π and cosine. pub trait Trigo { /// π. fn pi() -> Self; /// Cosine of the argument. fn cos(self) -> Self; } impl Trigo for f32 { #[inline(always)] fn pi() -> Self { f32::consts::PI } #[inline(always)] fn cos(self) -> Self { #[cfg(feature = "std")] { self.cos() } #[cfg(not(feature = "std"))] { unsafe { cosf32(self) } } } } impl Trigo for f64 { #[inline(always)] fn pi() -> Self { f64::consts::PI } #[inline(always)] fn cos(self) -> Self { #[cfg(feature = "std")] { self.cos() } #[cfg(not(feature = "std"))] { unsafe { cosf64(self) } } } } // Default implementation of Interpolate::cubic_hermite`. // // `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). pub(crate) fn cubic_hermite_def(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V where V: Linear, T: Additive + Mul + One { // some stupid generic constants, because Rust doesn’t have polymorphic literals… let one_t = T::one(); let two_t = one_t + one_t; // lolololol let three_t = two_t + one_t; // megalol // sampler stuff let t2 = t * t; let t3 = t2 * t; let two_t3 = t3 * two_t; let three_t2 = t2 * three_t; // tangents let m0 = (b.0 - x.0).outer_div(b.1 - x.1); let m1 = (y.0 - a.0).outer_div(y.1 - a.1); a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2) } macro_rules! impl_interpolate_simple { ($t:ty) => { impl Interpolate<$t> for $t { fn lerp(a: Self, b: Self, t: $t) -> Self { a * (1. - t) + b * t } fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self { cubic_hermite_def(x, a, b, y, t) } } } } impl_interpolate_simple!(f32); impl_interpolate_simple!(f64); macro_rules! impl_interpolate_via { ($t:ty, $v:ty) => { impl Interpolate<$t> for $v { fn lerp(a: Self, b: Self, t: $t) -> Self { a * (1. - t as $v) + b * t as $v } fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self { cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v) } } } } impl_interpolate_via!(f32, f64); impl_interpolate_via!(f64, f32);