319 lines
10 KiB
Rust
319 lines
10 KiB
Rust
//! Spline curves and operations.
|
||
|
||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||
|
||
use crate::interpolate::{Additive, Interpolate, One, Trigo};
|
||
use crate::interpolation::Interpolation;
|
||
use crate::key::Key;
|
||
|
||
/// Spline curve used to provide interpolation between control points (keys).
|
||
///
|
||
/// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with
|
||
/// [`Spline::from_vec`] or [`Spline::from_iter`], the keys don’t have to be sorted (they are sorted
|
||
/// automatically by the sampling value).
|
||
///
|
||
/// You can sample from a spline with several functions:
|
||
///
|
||
/// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available
|
||
/// for the required interpolation mode, you get `None`.
|
||
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
|
||
/// or last key if out of bound; it will return `None` if not enough key.
|
||
#[derive(Debug, Clone)]
|
||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||
|
||
impl<T, V> Spline<T, V> {
|
||
/// Internal sort to ensure invariant of sorting keys is valid.
|
||
fn internal_sort(&mut self) where T: PartialOrd {
|
||
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||
}
|
||
|
||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||
/// to provide ascending sorted ones (for performance purposes).
|
||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||
let mut spline = Spline(keys);
|
||
spline.internal_sort();
|
||
spline
|
||
}
|
||
|
||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||
/// sorted.
|
||
///
|
||
/// # Note on iterators
|
||
///
|
||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||
Self::from_vec(iter.collect())
|
||
}
|
||
|
||
/// Retrieve the keys of a spline.
|
||
pub fn keys(&self) -> &[Key<T, V>] {
|
||
&self.0
|
||
}
|
||
|
||
/// Number of keys.
|
||
#[inline(always)]
|
||
pub fn len(&self) -> usize {
|
||
self.0.len()
|
||
}
|
||
|
||
/// Check whether the spline has no key.
|
||
#[inline(always)]
|
||
pub fn is_empty(&self) -> bool {
|
||
self.0.is_empty()
|
||
}
|
||
|
||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||
/// key.
|
||
///
|
||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||
/// the sampling.
|
||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||
V: Additive + Interpolate<T> {
|
||
let keys = &self.0;
|
||
let i = search_lower_cp(keys, t)?;
|
||
let cp0 = &keys[i];
|
||
|
||
match cp0.interpolation {
|
||
Interpolation::Step(threshold) => {
|
||
let cp1 = &keys[i + 1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||
|
||
Some((value, cp0, Some(cp1)))
|
||
}
|
||
|
||
Interpolation::Linear => {
|
||
let cp1 = &keys[i + 1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||
|
||
Some((value, cp0, Some(cp1)))
|
||
}
|
||
|
||
Interpolation::Cosine => {
|
||
let two_t = T::one() + T::one();
|
||
let cp1 = &keys[i + 1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||
|
||
Some((value, cp0, Some(cp1)))
|
||
}
|
||
|
||
Interpolation::CatmullRom => {
|
||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||
// None.
|
||
if i == 0 || i >= keys.len() - 2 {
|
||
None
|
||
} else {
|
||
let cp1 = &keys[i + 1];
|
||
let cpm0 = &keys[i - 1];
|
||
let cpm1 = &keys[i + 2];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||
|
||
Some((value, cp0, Some(cp1)))
|
||
}
|
||
}
|
||
|
||
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||
let cp1 = &keys[i + 1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
let value =
|
||
match cp1.interpolation {
|
||
Interpolation::Bezier(v) => {
|
||
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
|
||
}
|
||
|
||
Interpolation::StrokeBezier(v, _) => {
|
||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||
}
|
||
|
||
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||
};
|
||
|
||
Some((value, cp0, Some(cp1)))
|
||
}
|
||
|
||
Interpolation::__NonExhaustive => unreachable!(),
|
||
}
|
||
}
|
||
|
||
/// Sample a spline at a given time.
|
||
///
|
||
pub fn sample(&self, t: T) -> Option<V>
|
||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||
V: Interpolate<T> {
|
||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||
}
|
||
|
||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||
/// associated key.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// If you sample before the first key or after the last one, return the first key or the last
|
||
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
|
||
///
|
||
/// # Error
|
||
///
|
||
/// This function returns [`None`] if you have no key.
|
||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||
V: Interpolate<T> {
|
||
if self.0.is_empty() {
|
||
return None;
|
||
}
|
||
|
||
self.sample_with_key(t).or_else(move || {
|
||
let first = self.0.first().unwrap();
|
||
if t <= first.t {
|
||
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||
Some((first.value, &first, second))
|
||
} else {
|
||
let last = self.0.last().unwrap();
|
||
|
||
if t >= last.t {
|
||
Some((last.value, &last, None))
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
})
|
||
}
|
||
|
||
/// Sample a spline at a given time with clamping.
|
||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||
V: Interpolate<T> {
|
||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||
}
|
||
|
||
/// Add a key into the spline.
|
||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||
self.0.push(key);
|
||
self.internal_sort();
|
||
}
|
||
|
||
/// Remove a key from the spline.
|
||
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
|
||
if index >= self.0.len() {
|
||
None
|
||
} else {
|
||
Some(self.0.remove(index))
|
||
}
|
||
}
|
||
|
||
/// Update a key and return the key already present.
|
||
///
|
||
/// The key is updated — if present — with the provided function.
|
||
///
|
||
/// # Notes
|
||
///
|
||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||
pub fn replace<F>(
|
||
&mut self,
|
||
index: usize,
|
||
f: F
|
||
) -> Option<Key<T, V>>
|
||
where
|
||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||
T: PartialOrd
|
||
{
|
||
let key = self.remove(index)?;
|
||
self.add(f(&key));
|
||
Some(key)
|
||
}
|
||
|
||
/// Get a key at a given index.
|
||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||
self.0.get(index)
|
||
}
|
||
|
||
/// Mutably get a key at a given index.
|
||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||
self.0.get_mut(index).map(|key| KeyMut {
|
||
value: &mut key.value,
|
||
interpolation: &mut key.interpolation
|
||
})
|
||
}
|
||
}
|
||
|
||
/// A mutable [`Key`].
|
||
///
|
||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||
pub struct KeyMut<'a, T, V> {
|
||
/// Carried value.
|
||
pub value: &'a mut V,
|
||
/// Interpolation mode to use for that key.
|
||
pub interpolation: &'a mut Interpolation<T, V>,
|
||
}
|
||
|
||
// Normalize a time ([0;1]) given two control points.
|
||
#[inline(always)]
|
||
pub(crate) fn normalize_time<T, V>(
|
||
t: T,
|
||
cp: &Key<T, V>,
|
||
cp1: &Key<T, V>
|
||
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
|
||
assert!(cp1.t != cp.t, "overlapping keys");
|
||
(t - cp.t) / (cp1.t - cp.t)
|
||
}
|
||
|
||
// Find the lower control point corresponding to a given time.
|
||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||
let mut i = 0;
|
||
let len = cps.len();
|
||
|
||
if len < 2 {
|
||
return None;
|
||
}
|
||
|
||
loop {
|
||
let cp = &cps[i];
|
||
let cp1 = &cps[i+1];
|
||
|
||
if t >= cp1.t {
|
||
if i >= len - 2 {
|
||
return None;
|
||
}
|
||
|
||
i += 1;
|
||
} else if t < cp.t {
|
||
if i == 0 {
|
||
return None;
|
||
}
|
||
|
||
i -= 1;
|
||
} else {
|
||
break; // found
|
||
}
|
||
}
|
||
|
||
Some(i)
|
||
}
|