444 lines
15 KiB
Rust
444 lines
15 KiB
Rust
//! # Spline interpolation made easy.
|
||
//!
|
||
//! This crate exposes splines for which each sections can be interpolated independently of each
|
||
//! other – i.e. it’s possible to interpolate with a linear interpolator on one section and then
|
||
//! switch to a cubic Hermite interpolator for the next section.
|
||
//!
|
||
//! Most of the crate consists of three types:
|
||
//!
|
||
//! - [`Key`], which represents the control points by which the spline must pass.
|
||
//! - [`Interpolation`], the type of possible interpolation for each segment.
|
||
//! - [`Spline`], a spline from which you can *sample* points by interpolation.
|
||
//!
|
||
//! When adding control points, you add new sections. Two control points define a section – i.e.
|
||
//! it’s not possible to define a spline without at least two control points. Every time you add a
|
||
//! new control point, a new section is created. Each section is assigned an interpolation mode that
|
||
//! is picked from its lower control point.
|
||
//!
|
||
//! # Quickly create splines
|
||
//!
|
||
//! ```
|
||
//! use splines::{Interpolation, Key, Spline};
|
||
//!
|
||
//! let start = Key::new(0., 0., Interpolation::Linear);
|
||
//! let end = Key::new(1., 10., Interpolation::default());
|
||
//! let spline = Spline::from_vec(vec![start, end]);
|
||
//! ```
|
||
//!
|
||
//! You will notice that we used `Interpolation::Linear` for the first key. The first key `start`’s
|
||
//! interpolation will be used for the whole segment defined by those two keys. The `end`’s
|
||
//! interpolation won’t be used. You can in theory use any [`Interpolation`] you want for the last
|
||
//! key. We use the default one because we don’t care.
|
||
//!
|
||
//! # Interpolate values
|
||
//!
|
||
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
|
||
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
|
||
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
|
||
//! value.
|
||
//!
|
||
//! If you try to sample in out-of-bounds interpolation parameter, you’ll get no value.
|
||
//!
|
||
//! ```
|
||
//! # use splines::{Interpolation, Key, Spline};
|
||
//! # let start = Key::new(0., 0., Interpolation::Linear);
|
||
//! # let end = Key::new(1., 10., Interpolation::Linear);
|
||
//! # let spline = Spline::from_vec(vec![start, end]);
|
||
//! assert_eq!(spline.sample(0.), Some(0.));
|
||
//! assert_eq!(spline.clamped_sample(1.), 10.);
|
||
//! assert_eq!(spline.sample(1.1), None);
|
||
//! ```
|
||
//!
|
||
//! It’s possible that you want to get a value even if you’re out-of-bounds. This is especially
|
||
//! important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
|
||
//! that purpose.
|
||
//!
|
||
//! ```
|
||
//! # use splines::{Interpolation, Key, Spline};
|
||
//! # let start = Key::new(0., 0., Interpolation::Linear);
|
||
//! # let end = Key::new(1., 10., Interpolation::Linear);
|
||
//! # let spline = Spline::from_vec(vec![start, end]);
|
||
//! assert_eq!(spline.clamped_sample(-0.9), 0.); // clamped to the first key
|
||
//! assert_eq!(spline.clamped_sample(1.1), 10.); // clamped to the last key
|
||
//! ```
|
||
//! # Features and customization
|
||
//!
|
||
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
|
||
//! the default configuration (i.e. you just add `"spline = …"` to your `Cargo.toml`) will always
|
||
//! give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
|
||
//! modes are. However, you might want more. Instead of letting other people do the extra work to
|
||
//! add implementations for very famous and useful traits – and do it in less efficient way, because
|
||
//! they wouldn’t have access to the internals of this crate, it’s possible to enable features in an
|
||
//! ad hoc way.
|
||
//!
|
||
//! This mechanism is not final and this is currently an experiment to see how people like it or
|
||
//! not. It’s especially important to see how it copes with the documentation.
|
||
//!
|
||
//! So here’s a list of currently supported features and how to enable them:
|
||
//!
|
||
//! - **Serialization / deserialization.**
|
||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||
//! types exported by this crate.
|
||
//! + Enable with the `"serialization"` feature.
|
||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||
//! + Adds some usefull implementations of `Interpolate` for some cgmath types.
|
||
//! + Enable with the `"impl-cgmath"` feature.
|
||
//! - **Standard library / no stdandard library.**
|
||
//! + It’s possible to compile against the standard library or go on your own without it.
|
||
//! + Compiling with the standard library is enabled by default.
|
||
//! + Use `defaut-features = []` in your `Cargo.toml` to disable.
|
||
//! + Enable explicitly with the `"std"` feataure.
|
||
|
||
#![cfg_attr(not(feature = "std"), no_std)]
|
||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
||
|
||
// on no_std, we also need the alloc crate for Vec
|
||
#[cfg(not(feature = "std"))] extern crate alloc;
|
||
|
||
#[cfg(feature = "impl-cgmath")] extern crate cgmath;
|
||
|
||
#[cfg(feature = "serialization")] extern crate serde;
|
||
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;
|
||
|
||
#[cfg(feature = "impl-cgmath")] use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
|
||
|
||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||
#[cfg(feature = "std")] use std::f32::consts;
|
||
#[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub};
|
||
|
||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||
#[cfg(not(feature = "std"))] use core::f32::consts;
|
||
#[cfg(not(feature = "std"))] use core::ops::{Add, Div, Mul, Sub};
|
||
|
||
/// A spline control point.
|
||
///
|
||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||
/// interpolation hint used to determine how to interpolate values on the segment defined by this
|
||
/// key and the next one – if existing.
|
||
#[derive(Copy, Clone, Debug)]
|
||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||
pub struct Key<T> {
|
||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||
pub t: f32,
|
||
/// Held value.
|
||
pub value: T,
|
||
/// Interpolation mode.
|
||
pub interpolation: Interpolation
|
||
}
|
||
|
||
impl<T> Key<T> {
|
||
/// Create a new key.
|
||
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
|
||
Key {
|
||
t: t,
|
||
value: value,
|
||
interpolation: interpolation
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Interpolation mode.
|
||
#[derive(Copy, Clone, Debug)]
|
||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||
pub enum Interpolation {
|
||
/// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
|
||
/// key is used.
|
||
///
|
||
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
|
||
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||
/// first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||
/// used.*
|
||
Step(f32),
|
||
/// Linear interpolation between a key and the next one.
|
||
Linear,
|
||
/// Cosine interpolation between a key and the next one.
|
||
Cosine,
|
||
/// Catmull-Rom interpolation.
|
||
CatmullRom
|
||
}
|
||
|
||
impl Default for Interpolation {
|
||
/// `Interpolation::Linear` is the default.
|
||
fn default() -> Self {
|
||
Interpolation::Linear
|
||
}
|
||
}
|
||
|
||
/// Spline curve used to provide interpolation between control points (keys).
|
||
#[derive(Debug, Clone)]
|
||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||
pub struct Spline<T>(Vec<Key<T>>);
|
||
|
||
impl<T> Spline<T> {
|
||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||
/// to provide ascending sorted ones (for performance purposes).
|
||
pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
|
||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||
|
||
Spline(keys)
|
||
}
|
||
|
||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||
/// sorted.
|
||
///
|
||
/// # Note on iterators
|
||
///
|
||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
|
||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
|
||
Self::from_vec(iter.collect())
|
||
}
|
||
|
||
/// Retrieve the keys of a spline.
|
||
pub fn keys(&self) -> &[Key<T>] {
|
||
&self.0
|
||
}
|
||
|
||
/// Sample a spline at a given time.
|
||
///
|
||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||
/// happen if you try to sample between two keys with a specific interpolation mode that make the
|
||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||
/// sampling.
|
||
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
|
||
let keys = &self.0;
|
||
let i = search_lower_cp(keys, t)?;
|
||
let cp0 = &keys[i];
|
||
|
||
match cp0.interpolation {
|
||
Interpolation::Step(threshold) => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||
},
|
||
Interpolation::Linear => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||
},
|
||
Interpolation::Cosine => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let cos_nt = {
|
||
#[cfg(feature = "std")]
|
||
{
|
||
(1. - f32::cos(nt * consts::PI)) * 0.5
|
||
}
|
||
|
||
#[cfg(not(feature = "std"))]
|
||
{
|
||
use core::intrinsics::cosf32;
|
||
unsafe { (1. - cosf32(nt * consts::PI)) * 0.5 }
|
||
}
|
||
};
|
||
|
||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||
},
|
||
Interpolation::CatmullRom => {
|
||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||
// None.
|
||
if i == 0 || i >= keys.len() - 2 {
|
||
None
|
||
} else {
|
||
let cp1 = &keys[i+1];
|
||
let cpm0 = &keys[i-1];
|
||
let cpm1 = &keys[i+2];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Sample a spline at a given time with clamping.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// If you sample before the first key or after the last one, return the first key or the last
|
||
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
|
||
///
|
||
/// # Panic
|
||
///
|
||
/// This function panics if you have no key.
|
||
pub fn clamped_sample(&self, t: f32) -> T where T: Interpolate {
|
||
let first = self.0.first().unwrap();
|
||
let last = self.0.last().unwrap();
|
||
|
||
if t <= first.t {
|
||
return first.value;
|
||
} else if t >= last.t {
|
||
return last.value;
|
||
}
|
||
|
||
self.sample(t).unwrap()
|
||
}
|
||
}
|
||
|
||
/// Iterator over spline keys.
|
||
///
|
||
/// This iterator type assures you to iterate over sorted keys.
|
||
pub struct Iter<'a, T> where T: 'a {
|
||
anim_param: &'a Spline<T>,
|
||
i: usize
|
||
}
|
||
|
||
impl<'a, T> Iterator for Iter<'a, T> {
|
||
type Item = &'a Key<T>;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
let r = self.anim_param.0.get(self.i);
|
||
|
||
if let Some(_) = r {
|
||
self.i += 1;
|
||
}
|
||
|
||
r
|
||
}
|
||
}
|
||
|
||
impl<'a, T> IntoIterator for &'a Spline<T> {
|
||
type Item = &'a Key<T>;
|
||
type IntoIter = Iter<'a, T>;
|
||
|
||
fn into_iter(self) -> Self::IntoIter {
|
||
Iter {
|
||
anim_param: self,
|
||
i: 0
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||
/// sampling on splines.
|
||
pub trait Interpolate: Copy {
|
||
/// Linear interpolation.
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self;
|
||
/// Cubic hermite interpolation.
|
||
///
|
||
/// Default to `Self::lerp`.
|
||
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
|
||
Self::lerp(a.0, b.0, t)
|
||
}
|
||
}
|
||
|
||
impl Interpolate for f32 {
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||
a * (1. - t) + b * t
|
||
}
|
||
|
||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||
cubic_hermite(x, a, b, y, t)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature = "impl-cgmath")]
|
||
impl Interpolate for Vector2<f32> {
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||
a.lerp(b, t)
|
||
}
|
||
|
||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||
cubic_hermite(x, a, b, y, t)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature = "impl-cgmath")]
|
||
impl Interpolate for Vector3<f32> {
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||
a.lerp(b, t)
|
||
}
|
||
|
||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||
cubic_hermite(x, a, b, y, t)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature = "impl-cgmath")]
|
||
impl Interpolate for Vector4<f32> {
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||
a.lerp(b, t)
|
||
}
|
||
|
||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||
cubic_hermite(x, a, b, y, t)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature = "impl-cgmath")]
|
||
impl Interpolate for Quaternion<f32> {
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||
a.nlerp(b, t)
|
||
}
|
||
}
|
||
|
||
// Default implementation of Interpolate::cubic_hermit.
|
||
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
|
||
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
|
||
// time stuff
|
||
let t2 = t * t;
|
||
let t3 = t2 * t;
|
||
let two_t3 = 2. * t3;
|
||
let three_t2 = 3. * t2;
|
||
|
||
// tangents
|
||
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||
|
||
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
|
||
}
|
||
|
||
// Normalize a time ([0;1]) given two control points.
|
||
#[inline(always)]
|
||
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
|
||
assert!(cp1.t != cp.t, "overlapping keys");
|
||
|
||
(t - cp.t) / (cp1.t - cp.t)
|
||
}
|
||
|
||
// Find the lower control point corresponding to a given time.
|
||
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
|
||
let mut i = 0;
|
||
let len = cps.len();
|
||
|
||
if len < 2 {
|
||
return None;
|
||
}
|
||
|
||
loop {
|
||
let cp = &cps[i];
|
||
let cp1 = &cps[i+1];
|
||
|
||
if t >= cp1.t {
|
||
if i >= len - 2 {
|
||
return None;
|
||
}
|
||
|
||
i += 1;
|
||
} else if t < cp.t {
|
||
if i == 0 {
|
||
return None;
|
||
}
|
||
|
||
i -= 1;
|
||
} else {
|
||
break; // found
|
||
}
|
||
}
|
||
|
||
Some(i)
|
||
}
|