embassy/embassy-rp/src/clocks.rs

565 lines
17 KiB
Rust
Raw Normal View History

2021-06-25 03:38:03 +02:00
use pac::clocks::vals::*;
use crate::{pac, reset};
2023-05-07 19:49:48 +02:00
static mut EXTERNAL_HZ: u32 = 0;
pub struct ClockConfig {
rosc_config: Option<RoscConfig>,
xosc_config: Option<XoscConfig>,
ref_clk_config: (RefClkSrc, u8),
sys_clk_config: (SysClkSrc, u32),
peri_clk_src: Option<ClkPeriCtrlAuxsrc>,
usb_clk_config: Option<(ClkUsbCtrlAuxsrc, u8)>,
adc_clk_config: Option<(ClkAdcCtrlAuxsrc, u8)>,
rtc_clk_config: Option<(ClkRtcCtrlAuxsrc, u32)>,
}
impl ClockConfig {
pub fn crystal(crystal_hz: u32) -> Self {
Self {
rosc_config: Some(RoscConfig {
range: pac::rosc::vals::FreqRange::MEDIUM,
drive_strength_0: 0,
drive_strength_1: 0,
drive_strength_2: 0,
drive_strength_3: 0,
drive_strength_4: 0,
drive_strength_5: 0,
drive_strength_6: 0,
drive_strength_7: 0,
div: 16,
}),
xosc_config: Some(XoscConfig {
hz: crystal_hz,
clock_type: ExternalClock::Crystal,
sys_pll: Some(PllConfig {
refdiv: 1,
vco_freq: 1500_000_000,
post_div1: 6,
post_div2: 2,
}),
usb_pll: Some(PllConfig {
refdiv: 1,
vco_freq: 480_000_000,
post_div1: 5,
post_div2: 2,
}),
}),
ref_clk_config: (RefClkSrc::Xosc, 1),
sys_clk_config: (SysClkSrc::Aux(ClkSysCtrlAuxsrc::CLKSRC_PLL_SYS), 1),
peri_clk_src: Some(ClkPeriCtrlAuxsrc::CLK_SYS),
usb_clk_config: Some((ClkUsbCtrlAuxsrc::CLKSRC_PLL_SYS, 1)),
adc_clk_config: Some((ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB, 1)),
rtc_clk_config: Some((ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB, 1024)),
}
}
pub fn rosc() -> Self {
Self {
rosc_config: Some(RoscConfig {
range: pac::rosc::vals::FreqRange::HIGH,
drive_strength_0: 0,
drive_strength_1: 0,
drive_strength_2: 0,
drive_strength_3: 0,
drive_strength_4: 0,
drive_strength_5: 0,
drive_strength_6: 0,
drive_strength_7: 0,
div: 1,
}),
xosc_config: None,
ref_clk_config: (RefClkSrc::Rosc, 4),
sys_clk_config: (SysClkSrc::Aux(ClkSysCtrlAuxsrc::ROSC_CLKSRC), 1),
peri_clk_src: Some(ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH),
usb_clk_config: None,
adc_clk_config: Some((ClkAdcCtrlAuxsrc::ROSC_CLKSRC_PH, 1)),
rtc_clk_config: Some((ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH, 1024)),
}
}
}
pub enum ExternalClock {
Crystal,
Clock,
}
pub struct XoscConfig {
hz: u32,
clock_type: ExternalClock,
sys_pll: Option<PllConfig>,
usb_pll: Option<PllConfig>,
}
pub struct RoscConfig {
range: pac::rosc::vals::FreqRange,
drive_strength_0: u8,
drive_strength_1: u8,
drive_strength_2: u8,
drive_strength_3: u8,
drive_strength_4: u8,
drive_strength_5: u8,
drive_strength_6: u8,
drive_strength_7: u8,
div: u16,
}
pub struct PllConfig {
pub refdiv: u32,
pub vco_freq: u32,
pub post_div1: u8,
pub post_div2: u8,
}
pub struct RefClkConfig {
pub src: RefClkSrc,
pub div: u8,
}
pub enum RefClkSrc {
Xosc,
Rosc,
Aux(ClkRefCtrlAuxsrc),
}
pub struct SysClkConfig {
pub src: SysClkSrc,
pub div: u32,
}
pub enum SysClkSrc {
Ref,
Aux(ClkSysCtrlAuxsrc),
}
2021-06-25 03:38:03 +02:00
2021-07-12 02:45:42 +02:00
/// safety: must be called exactly once at bootup
2023-05-07 19:49:48 +02:00
pub(crate) unsafe fn init(config: ClockConfig) {
2021-06-25 03:38:03 +02:00
// Reset everything except:
// - QSPI (we're using it to run this code!)
// - PLLs (it may be suicide if that's what's clocking us)
// - USB, SYSCFG (breaks usb-to-swd on core1)
2021-06-25 03:38:03 +02:00
let mut peris = reset::ALL_PERIPHERALS;
peris.set_io_qspi(false);
peris.set_pads_qspi(false);
peris.set_pll_sys(false);
peris.set_pll_usb(false);
2023-05-07 19:49:48 +02:00
// TODO investigate if usb should be unreset here
peris.set_usbctrl(false);
peris.set_syscfg(false);
2021-06-25 03:38:03 +02:00
reset::reset(peris);
// Disable resus that may be enabled from previous software
2021-06-25 03:38:03 +02:00
let c = pac::CLOCKS;
c.clk_sys_resus_ctrl()
.write_value(pac::clocks::regs::ClkSysResusCtrl(0));
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
2022-06-12 22:15:44 +02:00
c.clk_sys_ctrl().modify(|w| w.set_src(ClkSysCtrlSrc::CLK_REF));
2021-06-25 03:38:03 +02:00
while c.clk_sys_selected().read() != 1 {}
2022-06-12 22:15:44 +02:00
c.clk_ref_ctrl().modify(|w| w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH));
2021-06-25 03:38:03 +02:00
while c.clk_ref_selected().read() != 1 {}
2023-05-07 19:49:48 +02:00
if let Some(config) = config.rosc_config {
configure_rosc(config);
}
2021-06-25 03:38:03 +02:00
2023-05-07 19:49:48 +02:00
if let Some(config) = config.xosc_config {
EXTERNAL_HZ = config.hz;
2021-06-25 03:38:03 +02:00
2023-05-07 19:49:48 +02:00
pac::WATCHDOG.tick().write(|w| {
w.set_cycles((config.hz / 1_000_000) as u16);
w.set_enable(true);
});
// start XOSC
match config.clock_type {
ExternalClock::Crystal => start_xosc(config.hz),
// TODO The datasheet says the xosc needs to be put into a bypass mode to use an
// external clock, but is mum about how to do that.
ExternalClock::Clock => todo!(),
}
if let Some(sys_pll_config) = config.sys_pll {
configure_pll(pac::PLL_SYS, config.hz, sys_pll_config);
}
if let Some(usb_pll_config) = config.usb_pll {
configure_pll(pac::PLL_USB, config.hz, usb_pll_config);
}
}
2021-06-25 03:38:03 +02:00
2023-05-07 19:49:48 +02:00
let (src, div) = config.ref_clk_config;
match src {
RefClkSrc::Xosc => {
c.clk_ref_ctrl().write(|w| {
w.set_src(ClkRefCtrlSrc::XOSC_CLKSRC);
});
while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::XOSC_CLKSRC.0 {}
c.clk_ref_div().write(|w| w.set_int(div));
}
RefClkSrc::Rosc => {
c.clk_ref_ctrl().write(|w| {
w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH);
});
while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::ROSC_CLKSRC_PH.0 {}
c.clk_ref_div().write(|w| w.set_int(div));
}
RefClkSrc::Aux(src) => {
c.clk_ref_ctrl().write(|w| {
w.set_auxsrc(src);
w.set_src(ClkRefCtrlSrc::CLKSRC_CLK_REF_AUX);
});
while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::CLKSRC_CLK_REF_AUX.0 {}
c.clk_ref_div().write(|w| w.set_int(div));
}
}
pac::WATCHDOG.tick().write(|w| {
w.set_cycles((clk_ref_freq() / 1_000_000) as u16);
2021-06-25 03:38:03 +02:00
w.set_enable(true);
});
2023-05-07 19:49:48 +02:00
let (src, div) = config.sys_clk_config;
match src {
SysClkSrc::Ref => {
c.clk_sys_ctrl().write(|w| {
w.set_src(ClkSysCtrlSrc::CLK_REF);
});
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF.0 {}
c.clk_sys_div().write(|w| w.set_int(div));
}
SysClkSrc::Aux(src) => {
c.clk_sys_ctrl().write(|w| {
w.set_src(ClkSysCtrlSrc::CLK_REF);
});
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF.0 {}
c.clk_sys_div().write(|w| w.set_int(div));
c.clk_sys_ctrl().write(|w| {
w.set_auxsrc(src);
w.set_src(ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX);
});
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX.0 {}
}
}
let mut peris = reset::ALL_PERIPHERALS;
if let Some(src) = config.peri_clk_src {
c.clk_peri_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(src);
});
} else {
peris.set_spi0(false);
peris.set_spi1(false);
peris.set_uart0(false);
peris.set_uart1(false);
}
if let Some((src, div)) = config.usb_clk_config {
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
c.clk_usb_div().write(|w| w.set_int(div));
c.clk_usb_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(src);
});
} else {
peris.set_usbctrl(false);
}
if let Some((src, div)) = config.adc_clk_config {
// CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
c.clk_adc_div().write(|w| w.set_int(div));
c.clk_adc_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(src);
});
} else {
peris.set_adc(false);
}
if let Some((src, div)) = config.rtc_clk_config {
// CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
c.clk_rtc_ctrl().modify(|w| {
w.set_enable(false);
});
c.clk_rtc_div().write(|w| w.set_int(div));
c.clk_rtc_ctrl().write(|w| {
w.set_enable(true);
w.set_auxsrc(src);
});
} else {
peris.set_rtc(false);
}
// Peripheral clocks should now all be running
reset::unreset_wait(peris);
}
unsafe fn configure_rosc(config: RoscConfig) {
let p = pac::ROSC;
p.freqa().write(|w| {
w.set_passwd(pac::rosc::vals::Passwd::PASS);
w.set_ds0(config.drive_strength_0);
w.set_ds1(config.drive_strength_1);
w.set_ds2(config.drive_strength_2);
w.set_ds3(config.drive_strength_3);
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
p.freqb().write(|w| {
w.set_passwd(pac::rosc::vals::Passwd::PASS);
w.set_ds4(config.drive_strength_4);
w.set_ds5(config.drive_strength_5);
w.set_ds6(config.drive_strength_6);
w.set_ds7(config.drive_strength_7);
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
p.div().write(|w| {
w.set_div(pac::rosc::vals::Div(config.div + pac::rosc::vals::Div::PASS.0));
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
p.ctrl().write(|w| {
w.set_enable(pac::rosc::vals::Enable::ENABLE);
w.set_freq_range(config.range);
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
}
2023-05-07 19:49:48 +02:00
pub fn estimate_rosc_freq() -> u32 {
let p = pac::ROSC;
let base = match unsafe { p.ctrl().read().freq_range() } {
pac::rosc::vals::FreqRange::LOW => 84_000_000,
pac::rosc::vals::FreqRange::MEDIUM => 104_000_000,
pac::rosc::vals::FreqRange::HIGH => 140_000_000,
pac::rosc::vals::FreqRange::TOOHIGH => 208_000_000,
_ => unreachable!(),
};
let mut div = unsafe { p.div().read().0 - pac::rosc::vals::Div::PASS.0 as u32 };
if div == 0 {
div = 32
}
base / div
}
pub(crate) fn clk_sys_freq() -> u32 {
let c = pac::CLOCKS;
let ctrl = unsafe { c.clk_sys_ctrl().read() };
let base = match ctrl.src() {
ClkSysCtrlSrc::CLK_REF => clk_ref_freq(),
ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX => {
match ctrl.auxsrc() {
ClkSysCtrlAuxsrc::CLKSRC_PLL_SYS => clk_sys_pll_freq(),
ClkSysCtrlAuxsrc::CLKSRC_PLL_USB => clk_usb_pll_freq(),
ClkSysCtrlAuxsrc::ROSC_CLKSRC => estimate_rosc_freq(),
ClkSysCtrlAuxsrc::XOSC_CLKSRC => unsafe { EXTERNAL_HZ },
// TODO not sure how to handle clkin sources
_ => todo!(),
}
}
_ => unreachable!(),
};
let div = unsafe { c.clk_sys_div().read() };
let int = if div.int() == 0 { 65536 } else { div.int() };
// TODO handle fractional clock div
let _frac = div.frac();
base / int
2021-06-25 03:38:03 +02:00
}
2023-05-07 19:49:48 +02:00
pub(crate) fn clk_sys_pll_freq() -> u32 {
let p = pac::PLL_SYS;
let input_freq = unsafe { EXTERNAL_HZ };
let cs = unsafe { p.cs().read() };
let refdiv = cs.refdiv() as u32;
let fbdiv = unsafe { p.fbdiv_int().read().fbdiv_int() } as u32;
let (postdiv1, postdiv2) = unsafe {
let prim = p.prim().read();
(prim.postdiv1() as u32, prim.postdiv2() as u32)
};
(((input_freq / refdiv) * fbdiv) / postdiv1) / postdiv2
}
pub(crate) fn clk_usb_pll_freq() -> u32 {
let p = pac::PLL_USB;
let input_freq = unsafe { EXTERNAL_HZ };
let cs = unsafe { p.cs().read() };
let refdiv = cs.refdiv() as u32;
let fbdiv = unsafe { p.fbdiv_int().read().fbdiv_int() } as u32;
let (postdiv1, postdiv2) = unsafe {
let prim = p.prim().read();
(prim.postdiv1() as u32, prim.postdiv2() as u32)
};
(((input_freq / refdiv) * fbdiv) / postdiv1) / postdiv2
2021-06-25 03:38:03 +02:00
}
pub(crate) fn clk_peri_freq() -> u32 {
2023-05-07 19:49:48 +02:00
let c = pac::CLOCKS;
let src = unsafe { c.clk_peri_ctrl().read().auxsrc() };
match src {
ClkPeriCtrlAuxsrc::CLK_SYS => clk_sys_freq(),
ClkPeriCtrlAuxsrc::CLKSRC_PLL_SYS => clk_sys_pll_freq(),
ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH => estimate_rosc_freq(),
ClkPeriCtrlAuxsrc::XOSC_CLKSRC => unsafe { EXTERNAL_HZ },
// TODO not sure how to handle clkin sources
_ => todo!(),
}
}
pub fn clk_ref_freq() -> u32 {
let c = pac::CLOCKS;
let ctrl = unsafe { c.clk_ref_ctrl().read() };
let base = match ctrl.src() {
ClkRefCtrlSrc::ROSC_CLKSRC_PH => estimate_rosc_freq(),
ClkRefCtrlSrc::XOSC_CLKSRC => unsafe { EXTERNAL_HZ },
ClkRefCtrlSrc::CLKSRC_CLK_REF_AUX => todo!(),
_ => unreachable!(),
};
let mut div = unsafe { c.clk_ref_div().read().int() } as u32;
if div == 0 {
div = 4;
}
base / div
2021-06-25 03:38:03 +02:00
}
2022-09-16 06:45:27 +02:00
pub(crate) fn clk_rtc_freq() -> u32 {
2023-05-07 19:49:48 +02:00
let c = pac::CLOCKS;
let src = unsafe { c.clk_rtc_ctrl().read().auxsrc() };
let base = match src {
ClkRtcCtrlAuxsrc::XOSC_CLKSRC => unsafe { EXTERNAL_HZ },
ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH => estimate_rosc_freq(),
ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB => clk_usb_pll_freq(),
ClkRtcCtrlAuxsrc::CLKSRC_PLL_SYS => clk_sys_pll_freq(),
// TODO not sure how to handle clkin sources
_ => todo!(),
};
let div = unsafe { c.clk_rtc_div().read() };
let int = if div.int() == 0 { 65536 } else { div.int() };
// TODO handle fractional clock div
let _frac = div.frac();
base / int
2021-06-25 03:38:03 +02:00
}
2023-05-07 19:49:48 +02:00
unsafe fn start_xosc(crystal_hz: u32) {
pac::XOSC
.ctrl()
.write(|w| w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ));
2023-05-07 19:49:48 +02:00
let startup_delay = ((crystal_hz / 1000) + 128) / 256;
2022-06-12 22:15:44 +02:00
pac::XOSC.startup().write(|w| w.set_delay(startup_delay as u16));
pac::XOSC.ctrl().write(|w| {
w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ);
w.set_enable(pac::xosc::vals::Enable::ENABLE);
});
while !pac::XOSC.status().read().stable() {}
}
2023-05-07 19:49:48 +02:00
unsafe fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) {
let ref_freq = input_freq / config.refdiv;
2021-06-25 03:38:03 +02:00
2023-05-07 19:49:48 +02:00
let fbdiv = config.vco_freq / ref_freq;
2021-06-25 06:23:20 +02:00
assert!(fbdiv >= 16 && fbdiv <= 320);
2023-05-07 19:49:48 +02:00
assert!(config.post_div1 >= 1 && config.post_div1 <= 7);
assert!(config.post_div2 >= 1 && config.post_div2 <= 7);
assert!(config.post_div2 <= config.post_div1);
assert!(ref_freq <= (config.vco_freq / 16));
2021-06-25 03:38:03 +02:00
// do not disrupt PLL that is already correctly configured and operating
let cs = p.cs().read();
let prim = p.prim().read();
if cs.lock()
2023-05-07 19:49:48 +02:00
&& cs.refdiv() == config.refdiv as u8
2023-04-21 00:57:28 +02:00
&& p.fbdiv_int().read().fbdiv_int() == fbdiv as u16
2023-05-07 19:49:48 +02:00
&& prim.postdiv1() == config.post_div1
&& prim.postdiv2() == config.post_div2
{
return;
}
// Reset it
let mut peris = reset::Peripherals(0);
match p {
pac::PLL_SYS => peris.set_pll_sys(true),
pac::PLL_USB => peris.set_pll_usb(true),
_ => unreachable!(),
}
reset::reset(peris);
reset::unreset_wait(peris);
// Load VCO-related dividers before starting VCO
2023-05-07 19:49:48 +02:00
p.cs().write(|w| w.set_refdiv(config.refdiv as _));
2021-06-25 03:38:03 +02:00
p.fbdiv_int().write(|w| w.set_fbdiv_int(fbdiv as _));
// Turn on PLL
2021-06-25 03:38:03 +02:00
p.pwr().modify(|w| {
w.set_pd(false);
w.set_vcopd(false);
w.set_postdivpd(true);
2021-06-25 03:38:03 +02:00
});
// Wait for PLL to lock
2021-06-25 03:38:03 +02:00
while !p.cs().read().lock() {}
// Wait for PLL to lock
2021-06-25 03:38:03 +02:00
p.prim().write(|w| {
2023-05-07 19:49:48 +02:00
w.set_postdiv1(config.post_div1);
w.set_postdiv2(config.post_div2);
2021-06-25 03:38:03 +02:00
});
// Turn on post divider
2021-06-25 03:38:03 +02:00
p.pwr().modify(|w| w.set_postdivpd(false));
}
/// Random number generator based on the ROSC RANDOMBIT register.
///
/// This will not produce random values if the ROSC is stopped or run at some
/// harmonic of the bus frequency. With default clock settings these are not
/// issues.
pub struct RoscRng;
impl RoscRng {
fn next_u8() -> u8 {
let random_reg = pac::ROSC.randombit();
let mut acc = 0;
for _ in 0..u8::BITS {
acc <<= 1;
acc |= unsafe { random_reg.read().randombit() as u8 };
}
acc
}
}
impl rand_core::RngCore for RoscRng {
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
Ok(self.fill_bytes(dest))
}
fn next_u32(&mut self) -> u32 {
rand_core::impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
rand_core::impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
dest.fill_with(Self::next_u8)
}
}