898 lines
29 KiB
Rust
Raw Normal View History

2023-02-01 00:48:33 +01:00
//! I2C-compatible Two Wire Interface in master mode (TWIM) driver.
2021-05-11 03:07:37 +02:00
#![macro_use]
use core::future::{poll_fn, Future};
use core::marker::PhantomData;
2022-06-12 22:15:44 +02:00
use core::sync::atomic::compiler_fence;
use core::sync::atomic::Ordering::SeqCst;
2021-06-04 17:31:35 +02:00
use core::task::Poll;
2022-06-12 22:15:44 +02:00
2022-07-08 15:47:47 +02:00
use embassy_embedded_hal::SetConfig;
use embassy_hal_common::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
2021-05-11 03:07:37 +02:00
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::Pin as GpioPin;
use crate::interrupt::{self, Interrupt, InterruptExt};
2021-05-11 03:07:37 +02:00
use crate::util::{slice_in_ram, slice_in_ram_or};
use crate::{gpio, pac, Peripheral};
2021-05-11 03:07:37 +02:00
2023-02-01 00:48:33 +01:00
/// TWI frequency
2022-07-08 15:47:47 +02:00
#[derive(Clone, Copy)]
2021-05-11 03:07:37 +02:00
pub enum Frequency {
2023-02-01 00:48:33 +01:00
/// 100 kbps
2021-05-11 03:07:37 +02:00
K100 = 26738688,
2023-02-01 00:48:33 +01:00
/// 250 kbps
2021-05-11 03:07:37 +02:00
K250 = 67108864,
2023-02-01 00:48:33 +01:00
/// 400 kbps
2021-05-11 03:07:37 +02:00
K400 = 104857600,
}
2023-02-01 00:48:33 +01:00
/// TWIM config.
2021-05-11 03:07:37 +02:00
#[non_exhaustive]
pub struct Config {
2023-02-01 00:48:33 +01:00
/// Frequency
2021-05-11 03:07:37 +02:00
pub frequency: Frequency,
2023-02-01 00:48:33 +01:00
/// Enable high drive for the SDA line.
2022-05-03 00:43:46 +02:00
pub sda_high_drive: bool,
2023-02-01 00:48:33 +01:00
/// Enable internal pullup for the SDA line.
///
/// Note that using external pullups is recommended for I2C, and
/// most boards already have them.
pub sda_pullup: bool,
2023-02-01 00:48:33 +01:00
/// Enable high drive for the SCL line.
2022-05-03 00:43:46 +02:00
pub scl_high_drive: bool,
2023-02-01 00:48:33 +01:00
/// Enable internal pullup for the SCL line.
///
/// Note that using external pullups is recommended for I2C, and
/// most boards already have them.
pub scl_pullup: bool,
2021-05-11 03:07:37 +02:00
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Frequency::K100,
2022-05-03 00:43:46 +02:00
scl_high_drive: false,
sda_pullup: false,
2022-05-03 00:43:46 +02:00
sda_high_drive: false,
scl_pullup: false,
2021-05-11 03:07:37 +02:00
}
}
}
2023-02-01 00:48:33 +01:00
/// TWI error.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
2023-02-01 00:48:33 +01:00
/// TX buffer was too long.
TxBufferTooLong,
2023-02-01 00:48:33 +01:00
/// RX buffer was too long.
RxBufferTooLong,
2023-02-01 00:48:33 +01:00
/// Data transmit failed.
Transmit,
2023-02-01 00:48:33 +01:00
/// Data reception failed.
Receive,
2023-02-01 00:48:33 +01:00
/// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
BufferNotInRAM,
/// Didn't receive an ACK bit after the address byte. Address might be wrong, or the i2c device chip might not be connected properly.
AddressNack,
2023-02-01 00:48:33 +01:00
/// Didn't receive an ACK bit after a data byte.
DataNack,
2023-02-01 00:48:33 +01:00
/// Overrun error.
Overrun,
2023-02-01 00:48:33 +01:00
/// Timeout error.
Timeout,
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
if r.events_stopped.read().bits() != 0 {
s.end_waker.wake();
r.intenclr.write(|w| w.stopped().clear());
}
if r.events_error.read().bits() != 0 {
s.end_waker.wake();
r.intenclr.write(|w| w.error().clear());
}
}
}
2023-02-01 00:48:33 +01:00
/// TWI driver.
2021-05-11 03:07:37 +02:00
pub struct Twim<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
2021-05-11 03:07:37 +02:00
}
impl<'d, T: Instance> Twim<'d, T> {
2023-02-01 00:48:33 +01:00
/// Create a new TWI driver.
2021-05-11 03:07:37 +02:00
pub fn new(
twim: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sda: impl Peripheral<P = impl GpioPin> + 'd,
scl: impl Peripheral<P = impl GpioPin> + 'd,
2021-05-11 03:07:37 +02:00
config: Config,
) -> Self {
into_ref!(twim, sda, scl);
2021-05-11 03:07:37 +02:00
let r = T::regs();
// Configure pins
sda.conf().write(|w| {
w.dir().input();
w.input().connect();
2022-05-03 00:43:46 +02:00
if config.sda_high_drive {
w.drive().h0d1();
} else {
w.drive().s0d1();
}
if config.sda_pullup {
w.pull().pullup();
}
2021-05-11 03:07:37 +02:00
w
});
scl.conf().write(|w| {
w.dir().input();
w.input().connect();
2022-05-03 00:43:46 +02:00
if config.scl_high_drive {
w.drive().h0d1();
} else {
w.drive().s0d1();
}
if config.scl_pullup {
w.pull().pullup();
}
2021-05-11 03:07:37 +02:00
w
});
// Select pins.
r.psel.sda.write(|w| unsafe { w.bits(sda.psel_bits()) });
r.psel.scl.write(|w| unsafe { w.bits(scl.psel_bits()) });
// Enable TWIM instance.
r.enable.write(|w| w.enable().enabled());
// Configure frequency.
r.frequency
.write(|w| unsafe { w.frequency().bits(config.frequency as u32) });
// Disable all events interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
unsafe { T::Interrupt::steal() }.unpend();
unsafe { T::Interrupt::steal() }.enable();
2021-05-11 03:07:37 +02:00
Self { _p: twim }
2021-05-11 03:07:37 +02:00
}
/// Set TX buffer, checking that it is in RAM and has suitable length.
unsafe fn set_tx_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
2023-02-01 00:48:33 +01:00
slice_in_ram_or(buffer, Error::BufferNotInRAM)?;
2021-05-11 03:07:37 +02:00
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::TxBufferTooLong);
}
let r = T::regs();
r.txd.ptr.write(|w|
// We're giving the register a pointer to the stack. Since we're
// waiting for the I2C transaction to end before this stack pointer
// becomes invalid, there's nothing wrong here.
//
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
w.ptr().bits(buffer.as_ptr() as u32));
r.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
w.maxcnt().bits(buffer.len() as _));
Ok(())
}
/// Set RX buffer, checking that it has suitable length.
unsafe fn set_rx_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// NOTE: RAM slice check is not necessary, as a mutable
// slice can only be built from data located in RAM.
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::RxBufferTooLong);
}
let r = T::regs();
r.rxd.ptr.write(|w|
// We're giving the register a pointer to the stack. Since we're
// waiting for the I2C transaction to end before this stack pointer
// becomes invalid, there's nothing wrong here.
//
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
w.ptr().bits(buffer.as_mut_ptr() as u32));
r.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to the type of maxcnt
// is also fine.
//
// Note that that nrf52840 maxcnt is a wider
// type than a u8, so we use a `_` cast rather than a `u8` cast.
// The MAXCNT field is thus at least 8 bits wide and accepts the
// full range of values that fit in a `u8`.
w.maxcnt().bits(buffer.len() as _));
Ok(())
}
fn clear_errorsrc(&mut self) {
let r = T::regs();
r.errorsrc
.write(|w| w.anack().bit(true).dnack().bit(true).overrun().bit(true));
}
/// Get Error instance, if any occurred.
fn check_errorsrc(&self) -> Result<(), Error> {
2021-05-11 03:07:37 +02:00
let r = T::regs();
let err = r.errorsrc.read();
if err.anack().is_received() {
return Err(Error::AddressNack);
}
if err.dnack().is_received() {
return Err(Error::DataNack);
}
if err.overrun().is_received() {
2023-02-01 00:48:33 +01:00
return Err(Error::Overrun);
2021-05-11 03:07:37 +02:00
}
Ok(())
}
fn check_rx(&self, len: usize) -> Result<(), Error> {
let r = T::regs();
if r.rxd.amount.read().bits() != len as u32 {
Err(Error::Receive)
} else {
Ok(())
}
}
fn check_tx(&self, len: usize) -> Result<(), Error> {
let r = T::regs();
if r.txd.amount.read().bits() != len as u32 {
Err(Error::Transmit)
} else {
Ok(())
}
}
2021-05-11 03:07:37 +02:00
/// Wait for stop or error
fn blocking_wait(&mut self) {
2021-05-11 03:07:37 +02:00
let r = T::regs();
loop {
if r.events_stopped.read().bits() != 0 {
r.events_stopped.reset();
break;
}
if r.events_error.read().bits() != 0 {
r.events_error.reset();
r.tasks_stop.write(|w| unsafe { w.bits(1) });
}
}
}
/// Wait for stop or error
#[cfg(feature = "time")]
fn blocking_wait_timeout(&mut self, timeout: Duration) -> Result<(), Error> {
let r = T::regs();
let deadline = Instant::now() + timeout;
loop {
if r.events_stopped.read().bits() != 0 {
r.events_stopped.reset();
break;
}
if r.events_error.read().bits() != 0 {
r.events_error.reset();
r.tasks_stop.write(|w| unsafe { w.bits(1) });
}
if Instant::now() > deadline {
r.tasks_stop.write(|w| unsafe { w.bits(1) });
return Err(Error::Timeout);
}
}
Ok(())
}
/// Wait for stop or error
fn async_wait(&mut self) -> impl Future<Output = ()> {
poll_fn(move |cx| {
let r = T::regs();
let s = T::state();
s.end_waker.register(cx.waker());
if r.events_stopped.read().bits() != 0 {
r.events_stopped.reset();
return Poll::Ready(());
}
// stop if an error occured
if r.events_error.read().bits() != 0 {
r.events_error.reset();
r.tasks_stop.write(|w| unsafe { w.bits(1) });
}
Poll::Pending
})
}
2022-06-12 22:15:44 +02:00
fn setup_write_from_ram(&mut self, address: u8, buffer: &[u8], inten: bool) -> Result<(), Error> {
2021-05-11 03:07:37 +02:00
let r = T::regs();
compiler_fence(SeqCst);
r.address.write(|w| unsafe { w.address().bits(address) });
// Set up the DMA write.
unsafe { self.set_tx_buffer(buffer)? };
// Clear events
r.events_stopped.reset();
r.events_error.reset();
r.events_lasttx.reset();
self.clear_errorsrc();
if inten {
r.intenset.write(|w| w.stopped().set().error().set());
} else {
r.intenclr.write(|w| w.stopped().clear().error().clear());
2021-05-11 03:07:37 +02:00
}
// Start write operation.
r.shorts.write(|w| w.lasttx_stop().enabled());
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
2022-06-07 14:52:45 +02:00
if buffer.len() == 0 {
// With a zero-length buffer, LASTTX doesn't fire (because there's no last byte!), so do the STOP ourselves.
r.tasks_stop.write(|w| unsafe { w.bits(1) });
}
2021-05-11 03:07:37 +02:00
Ok(())
}
fn setup_read(&mut self, address: u8, buffer: &mut [u8], inten: bool) -> Result<(), Error> {
2021-05-11 03:07:37 +02:00
let r = T::regs();
compiler_fence(SeqCst);
r.address.write(|w| unsafe { w.address().bits(address) });
// Set up the DMA read.
unsafe { self.set_rx_buffer(buffer)? };
// Clear events
r.events_stopped.reset();
r.events_error.reset();
self.clear_errorsrc();
if inten {
r.intenset.write(|w| w.stopped().set().error().set());
} else {
r.intenclr.write(|w| w.stopped().clear().error().clear());
2021-05-11 03:07:37 +02:00
}
// Start read operation.
r.shorts.write(|w| w.lastrx_stop().enabled());
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
2022-06-07 14:52:45 +02:00
if buffer.len() == 0 {
// With a zero-length buffer, LASTRX doesn't fire (because there's no last byte!), so do the STOP ourselves.
r.tasks_stop.write(|w| unsafe { w.bits(1) });
}
2021-05-11 03:07:37 +02:00
Ok(())
}
fn setup_write_read_from_ram(
2021-05-11 03:07:37 +02:00
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
inten: bool,
2021-05-11 03:07:37 +02:00
) -> Result<(), Error> {
let r = T::regs();
compiler_fence(SeqCst);
r.address.write(|w| unsafe { w.address().bits(address) });
// Set up DMA buffers.
unsafe {
self.set_tx_buffer(wr_buffer)?;
self.set_rx_buffer(rd_buffer)?;
}
// Clear events
r.events_stopped.reset();
r.events_error.reset();
self.clear_errorsrc();
if inten {
r.intenset.write(|w| w.stopped().set().error().set());
} else {
r.intenclr.write(|w| w.stopped().clear().error().clear());
}
2021-05-11 03:07:37 +02:00
// Start write+read operation.
r.shorts.write(|w| {
w.lasttx_startrx().enabled();
w.lastrx_stop().enabled();
w
});
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
2022-06-07 14:52:45 +02:00
if wr_buffer.len() == 0 && rd_buffer.len() == 0 {
// With a zero-length buffer, LASTRX/LASTTX doesn't fire (because there's no last byte!), so do the STOP ourselves.
// TODO handle when only one of the buffers is zero length
r.tasks_stop.write(|w| unsafe { w.bits(1) });
}
Ok(())
}
2021-05-11 03:07:37 +02:00
fn setup_write_read(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
inten: bool,
) -> Result<(), Error> {
match self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, inten) {
Ok(_) => Ok(()),
2023-02-01 00:48:33 +01:00
Err(Error::BufferNotInRAM) => {
trace!("Copying TWIM tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..wr_buffer.len()];
tx_ram_buf.copy_from_slice(wr_buffer);
self.setup_write_read_from_ram(address, &tx_ram_buf, rd_buffer, inten)
}
Err(error) => Err(error),
}
}
fn setup_write(&mut self, address: u8, wr_buffer: &[u8], inten: bool) -> Result<(), Error> {
match self.setup_write_from_ram(address, wr_buffer, inten) {
Ok(_) => Ok(()),
2023-02-01 00:48:33 +01:00
Err(Error::BufferNotInRAM) => {
trace!("Copying TWIM tx buffer into RAM for DMA");
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..wr_buffer.len()];
tx_ram_buf.copy_from_slice(wr_buffer);
self.setup_write_from_ram(address, &tx_ram_buf, inten)
}
Err(error) => Err(error),
}
}
/// Write to an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub fn blocking_write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.setup_write(address, buffer, false)?;
self.blocking_wait();
2021-05-11 03:07:37 +02:00
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(buffer.len())?;
Ok(())
}
2021-05-11 03:07:37 +02:00
/// Same as [`blocking_write`](Twim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.setup_write_from_ram(address, buffer, false)?;
self.blocking_wait();
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(buffer.len())?;
Ok(())
}
/// Read from an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.setup_read(address, buffer, false)?;
self.blocking_wait();
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_rx(buffer.len())?;
Ok(())
}
2021-05-11 03:07:37 +02:00
/// Write data to an I2C slave, then read data from the slave without
/// triggering a stop condition between the two.
///
/// The buffers must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
2022-06-12 22:15:44 +02:00
pub fn blocking_write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Error> {
self.setup_write_read(address, wr_buffer, rd_buffer, false)?;
self.blocking_wait();
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(wr_buffer.len())?;
self.check_rx(rd_buffer.len())?;
2021-05-11 03:07:37 +02:00
Ok(())
}
/// Same as [`blocking_write_read`](Twim::blocking_write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_read_from_ram(
2021-05-11 03:07:37 +02:00
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
) -> Result<(), Error> {
self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, false)?;
self.blocking_wait();
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(wr_buffer.len())?;
self.check_rx(rd_buffer.len())?;
Ok(())
2021-05-11 03:07:37 +02:00
}
2021-06-05 11:58:50 +02:00
// ===========================================
/// Write to an I2C slave with timeout.
///
/// See [`blocking_write`].
#[cfg(feature = "time")]
2022-06-12 22:15:44 +02:00
pub fn blocking_write_timeout(&mut self, address: u8, buffer: &[u8], timeout: Duration) -> Result<(), Error> {
self.setup_write(address, buffer, false)?;
self.blocking_wait_timeout(timeout)?;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(buffer.len())?;
Ok(())
}
/// Same as [`blocking_write`](Twim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
#[cfg(feature = "time")]
pub fn blocking_write_from_ram_timeout(
&mut self,
address: u8,
buffer: &[u8],
timeout: Duration,
) -> Result<(), Error> {
self.setup_write_from_ram(address, buffer, false)?;
self.blocking_wait_timeout(timeout)?;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(buffer.len())?;
Ok(())
}
/// Read from an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
#[cfg(feature = "time")]
2022-06-12 22:15:44 +02:00
pub fn blocking_read_timeout(&mut self, address: u8, buffer: &mut [u8], timeout: Duration) -> Result<(), Error> {
self.setup_read(address, buffer, false)?;
self.blocking_wait_timeout(timeout)?;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_rx(buffer.len())?;
Ok(())
}
/// Write data to an I2C slave, then read data from the slave without
/// triggering a stop condition between the two.
///
/// The buffers must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
#[cfg(feature = "time")]
pub fn blocking_write_read_timeout(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
timeout: Duration,
) -> Result<(), Error> {
self.setup_write_read(address, wr_buffer, rd_buffer, false)?;
self.blocking_wait_timeout(timeout)?;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(wr_buffer.len())?;
self.check_rx(rd_buffer.len())?;
Ok(())
}
/// Same as [`blocking_write_read`](Twim::blocking_write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
#[cfg(feature = "time")]
pub fn blocking_write_read_from_ram_timeout(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
timeout: Duration,
) -> Result<(), Error> {
self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, false)?;
self.blocking_wait_timeout(timeout)?;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(wr_buffer.len())?;
self.check_rx(rd_buffer.len())?;
Ok(())
}
// ===========================================
2023-02-01 00:48:33 +01:00
/// Read from an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.setup_read(address, buffer, true)?;
self.async_wait().await;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_rx(buffer.len())?;
Ok(())
}
2021-06-05 11:58:50 +02:00
2023-02-01 00:48:33 +01:00
/// Write to an I2C slave.
///
/// The buffer must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
pub async fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.setup_write(address, buffer, true)?;
self.async_wait().await;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(buffer.len())?;
Ok(())
}
2021-06-05 11:58:50 +02:00
/// Same as [`write`](Twim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, address: u8, buffer: &[u8]) -> Result<(), Error> {
self.setup_write_from_ram(address, buffer, true)?;
self.async_wait().await;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(buffer.len())?;
Ok(())
}
2023-02-01 00:48:33 +01:00
/// Write data to an I2C slave, then read data from the slave without
/// triggering a stop condition between the two.
///
/// The buffers must have a length of at most 255 bytes on the nRF52832
/// and at most 65535 bytes on the nRF52840.
2022-06-12 22:15:44 +02:00
pub async fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Error> {
self.setup_write_read(address, wr_buffer, rd_buffer, true)?;
self.async_wait().await;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(wr_buffer.len())?;
self.check_rx(rd_buffer.len())?;
Ok(())
2021-06-05 11:58:50 +02:00
}
/// Same as [`write_read`](Twim::write_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_read_from_ram(
&mut self,
address: u8,
wr_buffer: &[u8],
rd_buffer: &mut [u8],
) -> Result<(), Error> {
self.setup_write_read_from_ram(address, wr_buffer, rd_buffer, true)?;
self.async_wait().await;
compiler_fence(SeqCst);
self.check_errorsrc()?;
self.check_tx(wr_buffer.len())?;
self.check_rx(rd_buffer.len())?;
Ok(())
}
2021-05-11 03:07:37 +02:00
}
impl<'a, T: Instance> Drop for Twim<'a, T> {
fn drop(&mut self) {
2021-12-23 13:43:14 +01:00
trace!("twim drop");
2021-05-11 03:07:37 +02:00
// TODO: check for abort
2021-05-11 03:07:37 +02:00
// disable!
let r = T::regs();
r.enable.write(|w| w.enable().disabled());
2021-05-26 18:09:18 +02:00
gpio::deconfigure_pin(r.psel.sda.read().bits());
gpio::deconfigure_pin(r.psel.scl.read().bits());
2021-05-11 03:07:37 +02:00
2021-12-23 13:43:14 +01:00
trace!("twim drop: done");
2021-05-11 03:07:37 +02:00
}
}
pub(crate) mod sealed {
use super::*;
pub struct State {
pub end_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
end_waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
fn regs() -> &'static pac::twim0::RegisterBlock;
fn state() -> &'static State;
}
}
2023-02-01 00:48:33 +01:00
/// TWIM peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static {
2023-02-01 00:48:33 +01:00
/// Interrupt for this peripheral.
2021-05-11 03:07:37 +02:00
type Interrupt: Interrupt;
}
macro_rules! impl_twim {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::twim::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::twim0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::twim::sealed::State {
static STATE: crate::twim::sealed::State = crate::twim::sealed::State::new();
&STATE
}
}
impl crate::twim::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}
// ====================
mod eh02 {
use super::*;
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::Write for Twim<'a, T> {
type Error = Error;
fn write<'w>(&mut self, addr: u8, bytes: &'w [u8]) -> Result<(), Error> {
if slice_in_ram(bytes) {
self.blocking_write(addr, bytes)
} else {
let buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..];
for chunk in bytes.chunks(FORCE_COPY_BUFFER_SIZE) {
buf[..chunk.len()].copy_from_slice(chunk);
self.blocking_write(addr, &buf[..chunk.len()])?;
}
Ok(())
}
}
}
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::Read for Twim<'a, T> {
type Error = Error;
fn read<'w>(&mut self, addr: u8, bytes: &'w mut [u8]) -> Result<(), Error> {
self.blocking_read(addr, bytes)
}
}
impl<'a, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for Twim<'a, T> {
type Error = Error;
2022-06-12 22:15:44 +02:00
fn write_read<'w>(&mut self, addr: u8, bytes: &'w [u8], buffer: &'w mut [u8]) -> Result<(), Error> {
self.blocking_write_read(addr, bytes, buffer)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::TxBufferTooLong => embedded_hal_1::i2c::ErrorKind::Other,
Self::RxBufferTooLong => embedded_hal_1::i2c::ErrorKind::Other,
Self::Transmit => embedded_hal_1::i2c::ErrorKind::Other,
Self::Receive => embedded_hal_1::i2c::ErrorKind::Other,
2023-02-01 00:48:33 +01:00
Self::BufferNotInRAM => embedded_hal_1::i2c::ErrorKind::Other,
2022-06-12 22:15:44 +02:00
Self::AddressNack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
}
Self::DataNack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Data)
}
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for Twim<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for Twim<'d, T> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, buffer)
}
2022-06-12 22:15:44 +02:00
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer)
}
fn transaction<'a>(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'a>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::*;
impl<'d, T: Instance> embedded_hal_async::i2c::I2c for Twim<'d, T> {
2023-04-06 22:25:24 +02:00
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
2023-04-06 22:25:24 +02:00
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
2023-04-06 22:25:24 +02:00
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
2023-04-06 22:25:24 +02:00
async fn transaction(
&mut self,
address: u8,
2023-04-06 22:25:24 +02:00
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
2022-11-21 23:31:31 +01:00
todo!()
}
}
}
2022-07-08 15:47:47 +02:00
2022-07-09 00:00:55 +02:00
impl<'d, T: Instance> SetConfig for Twim<'d, T> {
type Config = Config;
fn set_config(&mut self, config: &Self::Config) {
2022-07-08 15:47:47 +02:00
let r = T::regs();
r.frequency
.write(|w| unsafe { w.frequency().bits(config.frequency as u32) });
}
}