embassy/embassy-stm32/src/adc/v4.rs

550 lines
16 KiB
Rust
Raw Normal View History

2022-03-19 11:05:00 +01:00
use core::marker::PhantomData;
2022-06-12 22:15:44 +02:00
use atomic_polyfill::{AtomicU8, Ordering};
2022-03-19 11:05:00 +01:00
use embedded_hal_02::blocking::delay::DelayUs;
use pac::adc::vals::{Adcaldif, Boost, Difsel, Exten, Pcsel};
use pac::adccommon::vals::Presc;
use super::{AdcPin, Instance};
use crate::time::Hertz;
use crate::{pac, Peripheral};
2022-03-19 11:05:00 +01:00
2022-07-27 00:17:26 +02:00
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3300;
2022-03-19 11:05:00 +01:00
pub enum Resolution {
SixteenBit,
FourteenBit,
TwelveBit,
TenBit,
EightBit,
}
impl Default for Resolution {
fn default() -> Self {
Self::SixteenBit
}
}
impl Resolution {
fn res(&self) -> pac::adc::vals::Res {
match self {
Resolution::SixteenBit => pac::adc::vals::Res::SIXTEENBIT,
Resolution::FourteenBit => pac::adc::vals::Res::FOURTEENBITV,
Resolution::TwelveBit => pac::adc::vals::Res::TWELVEBITV,
Resolution::TenBit => pac::adc::vals::Res::TENBIT,
Resolution::EightBit => pac::adc::vals::Res::EIGHTBIT,
}
}
pub fn to_max_count(&self) -> u32 {
match self {
Resolution::SixteenBit => (1 << 16) - 1,
Resolution::FourteenBit => (1 << 14) - 1,
Resolution::TwelveBit => (1 << 12) - 1,
Resolution::TenBit => (1 << 10) - 1,
Resolution::EightBit => (1 << 8) - 1,
}
}
}
pub trait InternalChannel<T>: sealed::InternalChannel<T> {}
mod sealed {
pub trait InternalChannel<T> {
fn channel(&self) -> u8;
}
}
2022-07-27 00:17:26 +02:00
// NOTE: Vrefint/Temperature/Vbat are only available on ADC3 on H7, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
pub struct VrefInt;
impl<T: Instance> InternalChannel<T> for VrefInt {}
impl<T: Instance> sealed::InternalChannel<T> for VrefInt {
2022-03-19 11:05:00 +01:00
fn channel(&self) -> u8 {
19
}
}
pub struct Temperature;
impl<T: Instance> InternalChannel<T> for Temperature {}
impl<T: Instance> sealed::InternalChannel<T> for Temperature {
fn channel(&self) -> u8 {
18
}
}
pub struct Vbat;
impl<T: Instance> InternalChannel<T> for Vbat {}
impl<T: Instance> sealed::InternalChannel<T> for Vbat {
fn channel(&self) -> u8 {
// TODO this should be 14 for H7a/b/35
17
}
}
static ADC12_ENABLE_COUNTER: AtomicU8 = AtomicU8::new(0);
#[cfg(stm32h7)]
foreach_peripheral!(
(adc, ADC1) => {
impl crate::rcc::sealed::RccPeripheral for crate::peripherals::ADC1 {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe {
match crate::rcc::get_freqs().adc {
Some(ck) => ck,
None => panic!("Invalid ADC clock configuration, AdcClockSource was likely not properly configured.")
}
})
}
fn enable() {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb1enr().modify(|w| w.set_adc12en(true))
});
ADC12_ENABLE_COUNTER.fetch_add(1, Ordering::SeqCst);
}
fn disable() {
if ADC12_ENABLE_COUNTER.load(Ordering::SeqCst) == 1 {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb1enr().modify(|w| w.set_adc12en(false));
})
}
ADC12_ENABLE_COUNTER.fetch_sub(1, Ordering::SeqCst);
}
fn reset() {
if ADC12_ENABLE_COUNTER.load(Ordering::SeqCst) == 1 {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb1rstr().modify(|w| w.set_adc12rst(true));
crate::pac::RCC.ahb1rstr().modify(|w| w.set_adc12rst(false));
});
}
}
}
impl crate::rcc::RccPeripheral for crate::peripherals::ADC1 {}
};
(adc, ADC2) => {
impl crate::rcc::sealed::RccPeripheral for crate::peripherals::ADC2 {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe {
match crate::rcc::get_freqs().adc {
Some(ck) => ck,
None => panic!("Invalid ADC clock configuration, AdcClockSource was likely not properly configured.")
}
})
}
fn enable() {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb1enr().modify(|w| w.set_adc12en(true))
});
ADC12_ENABLE_COUNTER.fetch_add(1, Ordering::SeqCst);
}
fn disable() {
if ADC12_ENABLE_COUNTER.load(Ordering::SeqCst) == 1 {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb1enr().modify(|w| w.set_adc12en(false));
})
}
ADC12_ENABLE_COUNTER.fetch_sub(1, Ordering::SeqCst);
}
fn reset() {
if ADC12_ENABLE_COUNTER.load(Ordering::SeqCst) == 1 {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb1rstr().modify(|w| w.set_adc12rst(true));
crate::pac::RCC.ahb1rstr().modify(|w| w.set_adc12rst(false));
});
}
}
}
impl crate::rcc::RccPeripheral for crate::peripherals::ADC2 {}
};
(adc, ADC3) => {
impl crate::rcc::sealed::RccPeripheral for crate::peripherals::ADC3 {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe {
match crate::rcc::get_freqs().adc {
Some(ck) => ck,
None => panic!("Invalid ADC clock configuration, AdcClockSource was likely not properly configured.")
}
})
}
fn enable() {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb4enr().modify(|w| w.set_adc3en(true))
});
}
fn disable() {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb4enr().modify(|w| w.set_adc3en(false));
})
}
fn reset() {
critical_section::with(|_| unsafe {
crate::pac::RCC.ahb4rstr().modify(|w| w.set_adc3rst(true));
crate::pac::RCC.ahb4rstr().modify(|w| w.set_adc3rst(false));
});
}
}
impl crate::rcc::RccPeripheral for crate::peripherals::ADC3 {}
};
);
/// ADC sample time
///
/// The default setting is 2.5 ADC clock cycles.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub enum SampleTime {
/// 1.5 ADC clock cycles
Cycles1_5,
/// 2.5 ADC clock cycles
Cycles2_5,
/// 8.5 ADC clock cycles
Cycles8_5,
/// 16.5 ADC clock cycles
Cycles16_5,
/// 32.5 ADC clock cycles
Cycles32_5,
/// 64.5 ADC clock cycles
Cycles64_5,
/// 387.5 ADC clock cycles
Cycles387_5,
/// 810.5 ADC clock cycles
Cycles810_5,
}
impl SampleTime {
pub(crate) fn sample_time(&self) -> pac::adc::vals::Smp {
match self {
SampleTime::Cycles1_5 => pac::adc::vals::Smp::CYCLES1_5,
SampleTime::Cycles2_5 => pac::adc::vals::Smp::CYCLES2_5,
SampleTime::Cycles8_5 => pac::adc::vals::Smp::CYCLES8_5,
SampleTime::Cycles16_5 => pac::adc::vals::Smp::CYCLES16_5,
SampleTime::Cycles32_5 => pac::adc::vals::Smp::CYCLES32_5,
SampleTime::Cycles64_5 => pac::adc::vals::Smp::CYCLES64_5,
SampleTime::Cycles387_5 => pac::adc::vals::Smp::CYCLES387_5,
SampleTime::Cycles810_5 => pac::adc::vals::Smp::CYCLES810_5,
}
}
}
impl Default for SampleTime {
fn default() -> Self {
Self::Cycles1_5
}
}
// NOTE (unused): The prescaler enum closely copies the hardware capabilities,
// but high prescaling doesn't make a lot of sense in the current implementation and is ommited.
#[allow(unused)]
enum Prescaler {
NotDivided,
DividedBy2,
DividedBy4,
DividedBy6,
DividedBy8,
DividedBy10,
DividedBy12,
DividedBy16,
DividedBy32,
DividedBy64,
DividedBy128,
DividedBy256,
}
impl Prescaler {
fn from_ker_ck(frequency: Hertz) -> Self {
let raw_prescaler = frequency.0 / 50_000_000;
match raw_prescaler {
0 => Self::NotDivided,
1 => Self::DividedBy2,
2..=3 => Self::DividedBy4,
4..=5 => Self::DividedBy6,
6..=7 => Self::DividedBy8,
8..=9 => Self::DividedBy10,
10..=11 => Self::DividedBy12,
_ => unimplemented!(),
}
}
fn divisor(&self) -> u32 {
match self {
Prescaler::NotDivided => 1,
Prescaler::DividedBy2 => 2,
Prescaler::DividedBy4 => 4,
Prescaler::DividedBy6 => 6,
Prescaler::DividedBy8 => 8,
Prescaler::DividedBy10 => 10,
Prescaler::DividedBy12 => 12,
Prescaler::DividedBy16 => 16,
Prescaler::DividedBy32 => 32,
Prescaler::DividedBy64 => 64,
Prescaler::DividedBy128 => 128,
Prescaler::DividedBy256 => 256,
}
}
fn presc(&self) -> Presc {
match self {
Prescaler::NotDivided => Presc::DIV1,
Prescaler::DividedBy2 => Presc::DIV2,
Prescaler::DividedBy4 => Presc::DIV4,
Prescaler::DividedBy6 => Presc::DIV6,
Prescaler::DividedBy8 => Presc::DIV8,
Prescaler::DividedBy10 => Presc::DIV10,
Prescaler::DividedBy12 => Presc::DIV12,
Prescaler::DividedBy16 => Presc::DIV16,
Prescaler::DividedBy32 => Presc::DIV32,
Prescaler::DividedBy64 => Presc::DIV64,
Prescaler::DividedBy128 => Presc::DIV128,
Prescaler::DividedBy256 => Presc::DIV256,
}
}
}
pub struct Adc<'d, T: Instance> {
sample_time: SampleTime,
2022-07-27 13:13:59 +02:00
vref_mv: u32,
2022-03-19 11:05:00 +01:00
resolution: Resolution,
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance + crate::rcc::RccPeripheral> Adc<'d, T> {
pub fn new(_peri: impl Peripheral<P = T> + 'd, delay: &mut impl DelayUs<u16>) -> Self {
embassy_hal_common::into_ref!(_peri);
2022-03-19 11:05:00 +01:00
T::enable();
T::reset();
let prescaler = Prescaler::from_ker_ck(T::frequency());
unsafe {
2022-06-12 22:15:44 +02:00
T::common_regs().ccr().modify(|w| w.set_presc(prescaler.presc()));
2022-03-19 11:05:00 +01:00
}
let frequency = Hertz(T::frequency().0 / prescaler.divisor());
2022-05-02 22:14:49 +02:00
info!("ADC frequency set to {} Hz", frequency.0);
2022-03-19 11:05:00 +01:00
if frequency > Hertz::mhz(50) {
2022-03-19 11:05:00 +01:00
panic!("Maximal allowed frequency for the ADC is 50 MHz and it varies with different packages, refer to ST docs for more information.");
}
let boost = if frequency < Hertz::khz(6_250) {
2022-03-19 11:05:00 +01:00
Boost::LT6_25
} else if frequency < Hertz::khz(12_500) {
2022-03-19 11:05:00 +01:00
Boost::LT12_5
} else if frequency < Hertz::mhz(25) {
2022-03-19 11:05:00 +01:00
Boost::LT25
} else {
Boost::LT50
};
unsafe {
T::regs().cr().modify(|w| w.set_boost(boost));
}
let mut s = Self {
sample_time: Default::default(),
2022-07-27 13:13:59 +02:00
vref_mv: VREF_DEFAULT_MV,
2022-03-19 11:05:00 +01:00
resolution: Resolution::default(),
phantom: PhantomData,
};
s.power_up(delay);
s.configure_differential_inputs();
s.calibrate();
delay.delay_us(1);
s.enable();
s.configure();
s
}
fn power_up(&mut self, delay: &mut impl DelayUs<u16>) {
unsafe {
T::regs().cr().modify(|reg| {
reg.set_deeppwd(false);
reg.set_advregen(true);
});
}
delay.delay_us(10);
}
fn configure_differential_inputs(&mut self) {
unsafe {
T::regs().difsel().modify(|w| {
for n in 0..20 {
w.set_difsel(n, Difsel::SINGLEENDED);
}
})
};
}
fn calibrate(&mut self) {
unsafe {
T::regs().cr().modify(|w| {
w.set_adcaldif(Adcaldif::SINGLEENDED);
w.set_adcallin(true);
});
T::regs().cr().modify(|w| w.set_adcal(true));
while T::regs().cr().read().adcal() {}
}
}
fn enable(&mut self) {
unsafe {
T::regs().isr().write(|w| w.set_adrdy(true));
T::regs().cr().modify(|w| w.set_aden(true));
while !T::regs().isr().read().adrdy() {}
T::regs().isr().write(|w| w.set_adrdy(true));
}
}
fn configure(&mut self) {
// single conversion mode, software trigger
unsafe {
T::regs().cfgr().modify(|w| {
w.set_cont(false);
w.set_exten(Exten::DISABLED);
})
}
}
2022-07-27 00:17:26 +02:00
pub fn enable_vrefint(&self) -> VrefInt {
2022-03-19 11:05:00 +01:00
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
}
2022-07-27 00:17:26 +02:00
VrefInt {}
2022-03-19 11:05:00 +01:00
}
pub fn enable_temperature(&self) -> Temperature {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_vsenseen(true);
});
}
Temperature {}
}
pub fn enable_vbat(&self) -> Vbat {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_vbaten(true);
});
}
Vbat {}
}
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
pub fn set_resolution(&mut self, resolution: Resolution) {
self.resolution = resolution;
}
2022-07-27 00:30:32 +02:00
/// Set VREF value in millivolts. This value is used for [to_millivolts()] sample conversion.
2022-07-27 00:17:26 +02:00
///
/// Use this if you have a known precise VREF (VDDA) pin reference voltage.
2022-07-27 13:13:59 +02:00
pub fn set_vref_mv(&mut self, vref_mv: u32) {
self.vref_mv = vref_mv;
2022-07-27 00:17:26 +02:00
}
2022-03-19 11:05:00 +01:00
/// Convert a measurement to millivolts
pub fn to_millivolts(&self, sample: u16) -> u16 {
2022-07-27 13:13:59 +02:00
((u32::from(sample) * self.vref_mv) / self.resolution.to_max_count()) as u16
2022-03-19 11:05:00 +01:00
}
/// Perform a single conversion.
fn convert(&mut self) -> u16 {
unsafe {
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
}
pub fn read<P>(&mut self, pin: &mut P) -> u16
where
P: AdcPin<T>,
P: crate::gpio::sealed::Pin,
{
unsafe {
pin.set_as_analog();
self.read_channel(pin.channel())
}
}
pub fn read_internal(&mut self, channel: &mut impl InternalChannel<T>) -> u16 {
unsafe { self.read_channel(channel.channel()) }
}
unsafe fn read_channel(&mut self, channel: u8) -> u16 {
// Configure ADC
2022-06-12 22:15:44 +02:00
T::regs().cfgr().modify(|reg| reg.set_res(self.resolution.res()));
2022-03-19 11:05:00 +01:00
// Configure channel
Self::set_channel_sample_time(channel, self.sample_time);
T::regs().cfgr2().modify(|w| w.set_lshift(0));
T::regs()
.pcsel()
.write(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED));
T::regs().sqr1().write(|reg| {
reg.set_sq(0, channel);
reg.set_l(0);
});
self.convert()
}
unsafe fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
if ch <= 9 {
T::regs()
.smpr(0)
.modify(|reg| reg.set_smp(ch as _, sample_time.sample_time()));
} else {
T::regs()
.smpr(1)
.modify(|reg| reg.set_smp((ch - 10) as _, sample_time.sample_time()));
}
}
}