embassy/embassy-rp/src/clocks.rs

1119 lines
35 KiB
Rust
Raw Normal View History

//! Clock configuration for the RP2040
use core::arch::asm;
use core::marker::PhantomData;
use core::sync::atomic::{AtomicU16, AtomicU32, Ordering};
use embassy_hal_internal::{into_ref, PeripheralRef};
2021-06-25 03:38:03 +02:00
use pac::clocks::vals::*;
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::pac::common::{Reg, RW};
use crate::{pac, reset, Peripheral};
2021-06-25 03:38:03 +02:00
// NOTE: all gpin handling is commented out for future reference.
// gpin is not usually safe to use during the boot init() call, so it won't
// be very useful until we have runtime clock reconfiguration. once this
// happens we can resurrect the commented-out gpin bits.
struct Clocks {
xosc: AtomicU32,
sys: AtomicU32,
reference: AtomicU32,
pll_sys: AtomicU32,
pll_usb: AtomicU32,
usb: AtomicU32,
adc: AtomicU32,
// gpin0: AtomicU32,
// gpin1: AtomicU32,
rosc: AtomicU32,
peri: AtomicU32,
rtc: AtomicU16,
}
static CLOCKS: Clocks = Clocks {
xosc: AtomicU32::new(0),
sys: AtomicU32::new(0),
reference: AtomicU32::new(0),
pll_sys: AtomicU32::new(0),
pll_usb: AtomicU32::new(0),
usb: AtomicU32::new(0),
adc: AtomicU32::new(0),
// gpin0: AtomicU32::new(0),
// gpin1: AtomicU32::new(0),
rosc: AtomicU32::new(0),
peri: AtomicU32::new(0),
rtc: AtomicU16::new(0),
};
2023-05-07 19:49:48 +02:00
/// Peripheral clock sources.
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum PeriClkSrc {
/// SYS.
2023-06-29 02:08:55 +02:00
Sys = ClkPeriCtrlAuxsrc::CLK_SYS as _,
/// PLL SYS.
2023-06-29 02:08:55 +02:00
PllSys = ClkPeriCtrlAuxsrc::CLKSRC_PLL_SYS as _,
/// PLL USB.
2023-06-29 02:08:55 +02:00
PllUsb = ClkPeriCtrlAuxsrc::CLKSRC_PLL_USB as _,
/// ROSC.
2023-06-29 02:08:55 +02:00
Rosc = ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH as _,
/// XOSC.
2023-06-29 02:08:55 +02:00
Xosc = ClkPeriCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
2023-05-09 23:45:24 +02:00
/// CLock configuration.
2023-05-09 23:45:24 +02:00
#[non_exhaustive]
2023-05-07 19:49:48 +02:00
pub struct ClockConfig {
/// Ring oscillator configuration.
2023-05-09 23:45:24 +02:00
pub rosc: Option<RoscConfig>,
/// External oscillator configuration.
2023-05-09 23:45:24 +02:00
pub xosc: Option<XoscConfig>,
/// Reference clock configuration.
2023-05-09 23:45:24 +02:00
pub ref_clk: RefClkConfig,
/// System clock configuration.
2023-05-09 23:45:24 +02:00
pub sys_clk: SysClkConfig,
/// Peripheral clock source configuration.
pub peri_clk_src: Option<PeriClkSrc>,
/// USB clock configuration.
2023-05-09 23:45:24 +02:00
pub usb_clk: Option<UsbClkConfig>,
/// ADC clock configuration.
2023-05-09 23:45:24 +02:00
pub adc_clk: Option<AdcClkConfig>,
/// RTC clock configuration.
2023-05-09 23:45:24 +02:00
pub rtc_clk: Option<RtcClkConfig>,
// gpin0: Option<(u32, Gpin<'static, AnyPin>)>,
// gpin1: Option<(u32, Gpin<'static, AnyPin>)>,
2023-05-07 19:49:48 +02:00
}
impl ClockConfig {
/// Clock configuration derived from external crystal.
2023-05-07 19:49:48 +02:00
pub fn crystal(crystal_hz: u32) -> Self {
Self {
rosc: Some(RoscConfig {
hz: 6_500_000,
range: RoscRange::Medium,
drive_strength: [0; 8],
2023-05-07 19:49:48 +02:00
div: 16,
}),
xosc: Some(XoscConfig {
2023-05-07 19:49:48 +02:00
hz: crystal_hz,
sys_pll: Some(PllConfig {
refdiv: 1,
fbdiv: 125,
2023-05-07 19:49:48 +02:00
post_div1: 6,
post_div2: 2,
}),
usb_pll: Some(PllConfig {
refdiv: 1,
fbdiv: 120,
post_div1: 6,
post_div2: 5,
2023-05-07 19:49:48 +02:00
}),
2023-08-30 21:52:03 +02:00
delay_multiplier: 128,
2023-05-07 19:49:48 +02:00
}),
ref_clk: RefClkConfig {
src: RefClkSrc::Xosc,
div: 1,
},
sys_clk: SysClkConfig {
src: SysClkSrc::PllSys,
div_int: 1,
div_frac: 0,
},
peri_clk_src: Some(PeriClkSrc::Sys),
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
usb_clk: Some(UsbClkConfig {
src: UsbClkSrc::PllUsb,
div: 1,
2023-05-09 23:45:24 +02:00
phase: 0,
}),
// CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
adc_clk: Some(AdcClkConfig {
src: AdcClkSrc::PllUsb,
div: 1,
2023-05-09 23:45:24 +02:00
phase: 0,
}),
// CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
rtc_clk: Some(RtcClkConfig {
src: RtcClkSrc::PllUsb,
div_int: 1024,
div_frac: 0,
2023-05-09 23:45:24 +02:00
phase: 0,
}),
// gpin0: None,
// gpin1: None,
2023-05-07 19:49:48 +02:00
}
}
/// Clock configuration from internal oscillator.
2023-05-07 19:49:48 +02:00
pub fn rosc() -> Self {
Self {
rosc: Some(RoscConfig {
hz: 140_000_000,
range: RoscRange::High,
drive_strength: [0; 8],
2023-05-07 19:49:48 +02:00
div: 1,
}),
xosc: None,
ref_clk: RefClkConfig {
src: RefClkSrc::Rosc,
div: 1,
},
sys_clk: SysClkConfig {
src: SysClkSrc::Rosc,
div_int: 1,
div_frac: 0,
},
peri_clk_src: Some(PeriClkSrc::Rosc),
usb_clk: None,
// CLK ADC = ROSC (140MHz) / 3 ≅ 48MHz
adc_clk: Some(AdcClkConfig {
src: AdcClkSrc::Rosc,
div: 3,
2023-05-09 23:45:24 +02:00
phase: 0,
}),
// CLK RTC = ROSC (140MHz) / 2986.667969 ≅ 46875Hz
rtc_clk: Some(RtcClkConfig {
src: RtcClkSrc::Rosc,
div_int: 2986,
div_frac: 171,
2023-05-09 23:45:24 +02:00
phase: 0,
}),
// gpin0: None,
// gpin1: None,
2023-05-07 19:49:48 +02:00
}
}
// pub fn bind_gpin<P: GpinPin>(&mut self, gpin: Gpin<'static, P>, hz: u32) {
// match P::NR {
// 0 => self.gpin0 = Some((hz, gpin.map_into())),
// 1 => self.gpin1 = Some((hz, gpin.map_into())),
// _ => unreachable!(),
// }
// // pin is now provisionally bound. if the config is applied it must be forgotten,
// // or Gpin::drop will deconfigure the clock input.
// }
2023-05-07 19:49:48 +02:00
}
/// ROSC freq range.
#[repr(u16)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RoscRange {
/// Low range.
Low = pac::rosc::vals::FreqRange::LOW.0,
/// Medium range (1.33x low)
Medium = pac::rosc::vals::FreqRange::MEDIUM.0,
/// High range (2x low)
High = pac::rosc::vals::FreqRange::HIGH.0,
/// Too high. Should not be used.
TooHigh = pac::rosc::vals::FreqRange::TOOHIGH.0,
}
/// On-chip ring oscillator configuration.
pub struct RoscConfig {
/// Final frequency of the oscillator, after the divider has been applied.
/// The oscillator has a nominal frequency of 6.5MHz at medium range with
/// divider 16 and all drive strengths set to 0, other values should be
/// measured in situ.
pub hz: u32,
/// Oscillator range.
pub range: RoscRange,
/// Drive strength for oscillator.
2023-05-09 23:45:24 +02:00
pub drive_strength: [u8; 8],
/// Output divider.
2023-05-09 23:45:24 +02:00
pub div: u16,
2023-05-07 19:49:48 +02:00
}
/// Crystal oscillator configuration.
2023-05-07 19:49:48 +02:00
pub struct XoscConfig {
/// Final frequency of the oscillator.
2023-05-09 23:45:24 +02:00
pub hz: u32,
/// Configuring PLL for the system clock.
2023-05-09 23:45:24 +02:00
pub sys_pll: Option<PllConfig>,
/// Configuring PLL for the USB clock.
2023-05-09 23:45:24 +02:00
pub usb_pll: Option<PllConfig>,
/// Multiplier for the startup delay.
2023-08-30 21:42:27 +02:00
pub delay_multiplier: u32,
2023-05-07 19:49:48 +02:00
}
/// PLL configuration.
2023-05-07 19:49:48 +02:00
pub struct PllConfig {
/// Reference divisor.
pub refdiv: u8,
/// Feedback divisor.
pub fbdiv: u16,
/// Output divisor 1.
2023-05-07 19:49:48 +02:00
pub post_div1: u8,
/// Output divisor 2.
2023-05-07 19:49:48 +02:00
pub post_div2: u8,
}
/// Reference clock config.
2023-05-07 19:49:48 +02:00
pub struct RefClkConfig {
/// Reference clock source.
2023-05-09 23:45:24 +02:00
pub src: RefClkSrc,
/// Reference clock divider.
2023-05-09 23:45:24 +02:00
pub div: u8,
2023-05-07 19:49:48 +02:00
}
/// Reference clock source.
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
2023-05-07 19:49:48 +02:00
pub enum RefClkSrc {
/// XOSC.
2023-05-07 19:49:48 +02:00
Xosc,
/// ROSC.
2023-05-07 19:49:48 +02:00
Rosc,
/// PLL USB.
PllUsb,
// Gpin0,
// Gpin1,
2023-05-07 19:49:48 +02:00
}
/// SYS clock source.
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
2023-05-07 19:49:48 +02:00
pub enum SysClkSrc {
/// REF.
2023-05-07 19:49:48 +02:00
Ref,
/// PLL SYS.
PllSys,
/// PLL USB.
PllUsb,
/// ROSC.
Rosc,
/// XOSC.
Xosc,
// Gpin0,
// Gpin1,
2023-05-07 19:49:48 +02:00
}
2021-06-25 03:38:03 +02:00
/// SYS clock config.
pub struct SysClkConfig {
/// SYS clock source.
2023-05-09 23:45:24 +02:00
pub src: SysClkSrc,
/// SYS clock divider.
2023-05-09 23:45:24 +02:00
pub div_int: u32,
/// SYS clock fraction.
2023-05-09 23:45:24 +02:00
pub div_frac: u8,
}
/// USB clock source.
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum UsbClkSrc {
/// PLL USB.
2023-06-29 02:08:55 +02:00
PllUsb = ClkUsbCtrlAuxsrc::CLKSRC_PLL_USB as _,
/// PLL SYS.
2023-06-29 02:08:55 +02:00
PllSys = ClkUsbCtrlAuxsrc::CLKSRC_PLL_SYS as _,
/// ROSC.
2023-06-29 02:08:55 +02:00
Rosc = ClkUsbCtrlAuxsrc::ROSC_CLKSRC_PH as _,
/// XOSC.
2023-06-29 02:08:55 +02:00
Xosc = ClkUsbCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkUsbCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkUsbCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
/// USB clock config.
pub struct UsbClkConfig {
/// USB clock source.
pub src: UsbClkSrc,
/// USB clock divider.
2023-05-09 23:45:24 +02:00
pub div: u8,
/// USB clock phase.
2023-05-09 23:45:24 +02:00
pub phase: u8,
}
/// ADC clock source.
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum AdcClkSrc {
/// PLL USB.
2023-06-29 02:08:55 +02:00
PllUsb = ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB as _,
/// PLL SYS.
2023-06-29 02:08:55 +02:00
PllSys = ClkAdcCtrlAuxsrc::CLKSRC_PLL_SYS as _,
/// ROSC.
2023-06-29 02:08:55 +02:00
Rosc = ClkAdcCtrlAuxsrc::ROSC_CLKSRC_PH as _,
/// XOSC.
2023-06-29 02:08:55 +02:00
Xosc = ClkAdcCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkAdcCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkAdcCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
/// ADC clock config.
pub struct AdcClkConfig {
/// ADC clock source.
pub src: AdcClkSrc,
/// ADC clock divider.
2023-05-09 23:45:24 +02:00
pub div: u8,
/// ADC clock phase.
2023-05-09 23:45:24 +02:00
pub phase: u8,
}
/// RTC clock source.
#[repr(u8)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RtcClkSrc {
/// PLL USB.
2023-06-29 02:08:55 +02:00
PllUsb = ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB as _,
/// PLL SYS.
2023-06-29 02:08:55 +02:00
PllSys = ClkRtcCtrlAuxsrc::CLKSRC_PLL_SYS as _,
/// ROSC.
2023-06-29 02:08:55 +02:00
Rosc = ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH as _,
/// XOSC.
2023-06-29 02:08:55 +02:00
Xosc = ClkRtcCtrlAuxsrc::XOSC_CLKSRC as _,
// Gpin0 = ClkRtcCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkRtcCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
}
/// RTC clock config.
pub struct RtcClkConfig {
/// RTC clock source.
pub src: RtcClkSrc,
/// RTC clock divider.
2023-05-09 23:45:24 +02:00
pub div_int: u32,
/// RTC clock divider fraction.
2023-05-09 23:45:24 +02:00
pub div_frac: u8,
/// RTC clock phase.
2023-05-09 23:45:24 +02:00
pub phase: u8,
}
2021-07-12 02:45:42 +02:00
/// safety: must be called exactly once at bootup
2023-05-07 19:49:48 +02:00
pub(crate) unsafe fn init(config: ClockConfig) {
2021-06-25 03:38:03 +02:00
// Reset everything except:
// - QSPI (we're using it to run this code!)
// - PLLs (it may be suicide if that's what's clocking us)
// - USB, SYSCFG (breaks usb-to-swd on core1)
// - RTC (else there would be no more time...)
2021-06-25 03:38:03 +02:00
let mut peris = reset::ALL_PERIPHERALS;
peris.set_io_qspi(false);
// peris.set_io_bank0(false); // might be suicide if we're clocked from gpin
2021-06-25 03:38:03 +02:00
peris.set_pads_qspi(false);
peris.set_pll_sys(false);
peris.set_pll_usb(false);
2023-05-07 19:49:48 +02:00
// TODO investigate if usb should be unreset here
peris.set_usbctrl(false);
peris.set_syscfg(false);
peris.set_rtc(false);
2021-06-25 03:38:03 +02:00
reset::reset(peris);
// Disable resus that may be enabled from previous software
2021-06-25 03:38:03 +02:00
let c = pac::CLOCKS;
c.clk_sys_resus_ctrl()
.write_value(pac::clocks::regs::ClkSysResusCtrl(0));
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
2022-06-12 22:15:44 +02:00
c.clk_sys_ctrl().modify(|w| w.set_src(ClkSysCtrlSrc::CLK_REF));
2021-06-25 03:38:03 +02:00
while c.clk_sys_selected().read() != 1 {}
2022-06-12 22:15:44 +02:00
c.clk_ref_ctrl().modify(|w| w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH));
2021-06-25 03:38:03 +02:00
while c.clk_ref_selected().read() != 1 {}
// Reset the PLLs
let mut peris = reset::Peripherals(0);
peris.set_pll_sys(true);
peris.set_pll_usb(true);
reset::reset(peris);
reset::unreset_wait(peris);
// let gpin0_freq = config.gpin0.map_or(0, |p| {
// core::mem::forget(p.1);
// p.0
// });
// CLOCKS.gpin0.store(gpin0_freq, Ordering::Relaxed);
// let gpin1_freq = config.gpin1.map_or(0, |p| {
// core::mem::forget(p.1);
// p.0
// });
// CLOCKS.gpin1.store(gpin1_freq, Ordering::Relaxed);
2021-06-25 03:38:03 +02:00
let rosc_freq = match config.rosc {
Some(config) => configure_rosc(config),
None => 0,
};
CLOCKS.rosc.store(rosc_freq, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
let (xosc_freq, pll_sys_freq, pll_usb_freq) = match config.xosc {
Some(config) => {
// start XOSC
// datasheet mentions support for clock inputs into XIN, but doesn't go into
// how this is achieved. pico-sdk doesn't support this at all.
2023-08-30 21:42:27 +02:00
start_xosc(config.hz, config.delay_multiplier);
let pll_sys_freq = match config.sys_pll {
Some(sys_pll_config) => configure_pll(pac::PLL_SYS, config.hz, sys_pll_config),
None => 0,
};
let pll_usb_freq = match config.usb_pll {
Some(usb_pll_config) => configure_pll(pac::PLL_USB, config.hz, usb_pll_config),
None => 0,
};
(config.hz, pll_sys_freq, pll_usb_freq)
2023-05-07 19:49:48 +02:00
}
None => (0, 0, 0),
};
CLOCKS.xosc.store(xosc_freq, Ordering::Relaxed);
CLOCKS.pll_sys.store(pll_sys_freq, Ordering::Relaxed);
CLOCKS.pll_usb.store(pll_usb_freq, Ordering::Relaxed);
2021-06-25 03:38:03 +02:00
let (ref_src, ref_aux, clk_ref_freq) = {
use {ClkRefCtrlAuxsrc as Aux, ClkRefCtrlSrc as Src};
let div = config.ref_clk.div as u32;
assert!(div >= 1 && div <= 4);
match config.ref_clk.src {
RefClkSrc::Xosc => (Src::XOSC_CLKSRC, Aux::CLKSRC_PLL_USB, xosc_freq / div),
RefClkSrc::Rosc => (Src::ROSC_CLKSRC_PH, Aux::CLKSRC_PLL_USB, rosc_freq / div),
RefClkSrc::PllUsb => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_PLL_USB, pll_usb_freq / div),
// RefClkSrc::Gpin0 => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_GPIN0, gpin0_freq / div),
// RefClkSrc::Gpin1 => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_GPIN1, gpin1_freq / div),
2023-05-07 19:49:48 +02:00
}
};
assert!(clk_ref_freq != 0);
CLOCKS.reference.store(clk_ref_freq, Ordering::Relaxed);
c.clk_ref_ctrl().write(|w| {
w.set_src(ref_src);
w.set_auxsrc(ref_aux);
});
2023-06-29 02:08:55 +02:00
while c.clk_ref_selected().read() != 1 << ref_src as u32 {}
c.clk_ref_div().write(|w| {
w.set_int(config.ref_clk.div);
});
2023-05-07 19:49:48 +02:00
pac::WATCHDOG.tick().write(|w| {
w.set_cycles((clk_ref_freq / 1_000_000) as u16);
2021-06-25 03:38:03 +02:00
w.set_enable(true);
});
let (sys_src, sys_aux, clk_sys_freq) = {
use {ClkSysCtrlAuxsrc as Aux, ClkSysCtrlSrc as Src};
let (src, aux, freq) = match config.sys_clk.src {
SysClkSrc::Ref => (Src::CLK_REF, Aux::CLKSRC_PLL_SYS, clk_ref_freq),
SysClkSrc::PllSys => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_PLL_SYS, pll_sys_freq),
SysClkSrc::PllUsb => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_PLL_USB, pll_usb_freq),
SysClkSrc::Rosc => (Src::CLKSRC_CLK_SYS_AUX, Aux::ROSC_CLKSRC, rosc_freq),
SysClkSrc::Xosc => (Src::CLKSRC_CLK_SYS_AUX, Aux::XOSC_CLKSRC, xosc_freq),
// SysClkSrc::Gpin0 => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_GPIN0, gpin0_freq),
// SysClkSrc::Gpin1 => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_GPIN1, gpin1_freq),
};
assert!(config.sys_clk.div_int <= 0x1000000);
let div = config.sys_clk.div_int as u64 * 256 + config.sys_clk.div_frac as u64;
(src, aux, ((freq as u64 * 256) / div) as u32)
};
assert!(clk_sys_freq != 0);
CLOCKS.sys.store(clk_sys_freq, Ordering::Relaxed);
if sys_src != ClkSysCtrlSrc::CLK_REF {
c.clk_sys_ctrl().write(|w| w.set_src(ClkSysCtrlSrc::CLK_REF));
2023-06-29 02:08:55 +02:00
while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF as u32 {}
2023-05-07 19:49:48 +02:00
}
c.clk_sys_ctrl().write(|w| {
w.set_auxsrc(sys_aux);
w.set_src(sys_src);
});
2023-06-29 02:08:55 +02:00
while c.clk_sys_selected().read() != 1 << sys_src as u32 {}
c.clk_sys_div().write(|w| {
w.set_int(config.sys_clk.div_int);
w.set_frac(config.sys_clk.div_frac);
});
2023-05-07 19:49:48 +02:00
let mut peris = reset::ALL_PERIPHERALS;
if let Some(src) = config.peri_clk_src {
c.clk_peri_ctrl().write(|w| {
w.set_enable(true);
2023-06-29 02:08:55 +02:00
w.set_auxsrc(ClkPeriCtrlAuxsrc::from_bits(src as _));
2023-05-07 19:49:48 +02:00
});
let peri_freq = match src {
PeriClkSrc::Sys => clk_sys_freq,
PeriClkSrc::PllSys => pll_sys_freq,
PeriClkSrc::PllUsb => pll_usb_freq,
PeriClkSrc::Rosc => rosc_freq,
PeriClkSrc::Xosc => xosc_freq,
// PeriClkSrc::Gpin0 => gpin0_freq,
// PeriClkSrc::Gpin1 => gpin1_freq,
};
assert!(peri_freq != 0);
CLOCKS.peri.store(peri_freq, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
} else {
peris.set_spi0(false);
peris.set_spi1(false);
peris.set_uart0(false);
peris.set_uart1(false);
CLOCKS.peri.store(0, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
}
if let Some(conf) = config.usb_clk {
c.clk_usb_div().write(|w| w.set_int(conf.div));
2023-05-07 19:49:48 +02:00
c.clk_usb_ctrl().write(|w| {
2023-05-09 23:45:24 +02:00
w.set_phase(conf.phase);
2023-05-07 19:49:48 +02:00
w.set_enable(true);
2023-06-29 02:08:55 +02:00
w.set_auxsrc(ClkUsbCtrlAuxsrc::from_bits(conf.src as _));
2023-05-07 19:49:48 +02:00
});
let usb_freq = match conf.src {
UsbClkSrc::PllUsb => pll_usb_freq,
UsbClkSrc::PllSys => pll_sys_freq,
UsbClkSrc::Rosc => rosc_freq,
UsbClkSrc::Xosc => xosc_freq,
// UsbClkSrc::Gpin0 => gpin0_freq,
// UsbClkSrc::Gpin1 => gpin1_freq,
};
assert!(usb_freq != 0);
assert!(conf.div >= 1 && conf.div <= 4);
CLOCKS.usb.store(usb_freq / conf.div as u32, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
} else {
peris.set_usbctrl(false);
CLOCKS.usb.store(0, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
}
if let Some(conf) = config.adc_clk {
c.clk_adc_div().write(|w| w.set_int(conf.div));
2023-05-07 19:49:48 +02:00
c.clk_adc_ctrl().write(|w| {
2023-05-09 23:45:24 +02:00
w.set_phase(conf.phase);
2023-05-07 19:49:48 +02:00
w.set_enable(true);
2023-06-29 02:08:55 +02:00
w.set_auxsrc(ClkAdcCtrlAuxsrc::from_bits(conf.src as _));
2023-05-07 19:49:48 +02:00
});
let adc_in_freq = match conf.src {
AdcClkSrc::PllUsb => pll_usb_freq,
AdcClkSrc::PllSys => pll_sys_freq,
AdcClkSrc::Rosc => rosc_freq,
AdcClkSrc::Xosc => xosc_freq,
// AdcClkSrc::Gpin0 => gpin0_freq,
// AdcClkSrc::Gpin1 => gpin1_freq,
};
assert!(adc_in_freq != 0);
assert!(conf.div >= 1 && conf.div <= 4);
CLOCKS.adc.store(adc_in_freq / conf.div as u32, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
} else {
peris.set_adc(false);
CLOCKS.adc.store(0, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
}
if let Some(conf) = config.rtc_clk {
c.clk_rtc_div().write(|w| {
w.set_int(conf.div_int);
w.set_frac(conf.div_frac);
});
2023-05-07 19:49:48 +02:00
c.clk_rtc_ctrl().write(|w| {
2023-05-09 23:45:24 +02:00
w.set_phase(conf.phase);
2023-05-07 19:49:48 +02:00
w.set_enable(true);
2023-06-29 02:08:55 +02:00
w.set_auxsrc(ClkRtcCtrlAuxsrc::from_bits(conf.src as _));
2023-05-07 19:49:48 +02:00
});
let rtc_in_freq = match conf.src {
RtcClkSrc::PllUsb => pll_usb_freq,
RtcClkSrc::PllSys => pll_sys_freq,
RtcClkSrc::Rosc => rosc_freq,
RtcClkSrc::Xosc => xosc_freq,
// RtcClkSrc::Gpin0 => gpin0_freq,
// RtcClkSrc::Gpin1 => gpin1_freq,
};
assert!(rtc_in_freq != 0);
assert!(config.sys_clk.div_int <= 0x1000000);
CLOCKS.rtc.store(
((rtc_in_freq as u64 * 256) / (conf.div_int as u64 * 256 + conf.div_frac as u64)) as u16,
Ordering::Relaxed,
);
2023-05-07 19:49:48 +02:00
} else {
peris.set_rtc(false);
CLOCKS.rtc.store(0, Ordering::Relaxed);
2023-05-07 19:49:48 +02:00
}
// Peripheral clocks should now all be running
reset::unreset_wait(peris);
}
2023-06-16 01:32:18 +02:00
fn configure_rosc(config: RoscConfig) -> u32 {
2023-05-07 19:49:48 +02:00
let p = pac::ROSC;
p.freqa().write(|w| {
w.set_passwd(pac::rosc::vals::Passwd::PASS);
w.set_ds0(config.drive_strength[0]);
w.set_ds1(config.drive_strength[1]);
w.set_ds2(config.drive_strength[2]);
w.set_ds3(config.drive_strength[3]);
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
p.freqb().write(|w| {
w.set_passwd(pac::rosc::vals::Passwd::PASS);
w.set_ds4(config.drive_strength[4]);
w.set_ds5(config.drive_strength[5]);
w.set_ds6(config.drive_strength[6]);
w.set_ds7(config.drive_strength[7]);
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
p.div().write(|w| {
w.set_div(pac::rosc::vals::Div(config.div + pac::rosc::vals::Div::PASS.0));
2021-06-25 03:38:03 +02:00
});
2023-05-07 19:49:48 +02:00
p.ctrl().write(|w| {
w.set_enable(pac::rosc::vals::Enable::ENABLE);
w.set_freq_range(pac::rosc::vals::FreqRange(config.range as u16));
2021-06-25 03:38:03 +02:00
});
config.hz
}
2023-05-07 19:49:48 +02:00
/// ROSC clock frequency.
pub fn rosc_freq() -> u32 {
CLOCKS.rosc.load(Ordering::Relaxed)
2023-05-07 19:49:48 +02:00
}
/// XOSC clock frequency.
pub fn xosc_freq() -> u32 {
CLOCKS.xosc.load(Ordering::Relaxed)
}
2023-05-07 19:49:48 +02:00
// pub fn gpin0_freq() -> u32 {
// CLOCKS.gpin0.load(Ordering::Relaxed)
// }
// pub fn gpin1_freq() -> u32 {
// CLOCKS.gpin1.load(Ordering::Relaxed)
// }
2021-06-25 03:38:03 +02:00
/// PLL SYS clock frequency.
pub fn pll_sys_freq() -> u32 {
CLOCKS.pll_sys.load(Ordering::Relaxed)
2023-05-07 19:49:48 +02:00
}
/// PLL USB clock frequency.
pub fn pll_usb_freq() -> u32 {
CLOCKS.pll_usb.load(Ordering::Relaxed)
2021-06-25 03:38:03 +02:00
}
/// SYS clock frequency.
pub fn clk_sys_freq() -> u32 {
CLOCKS.sys.load(Ordering::Relaxed)
2023-05-07 19:49:48 +02:00
}
/// REF clock frequency.
2023-05-07 19:49:48 +02:00
pub fn clk_ref_freq() -> u32 {
CLOCKS.reference.load(Ordering::Relaxed)
}
/// Peripheral clock frequency.
pub fn clk_peri_freq() -> u32 {
CLOCKS.peri.load(Ordering::Relaxed)
}
2023-05-07 19:49:48 +02:00
/// USB clock frequency.
pub fn clk_usb_freq() -> u32 {
CLOCKS.usb.load(Ordering::Relaxed)
2021-06-25 03:38:03 +02:00
}
/// ADC clock frequency.
pub fn clk_adc_freq() -> u32 {
CLOCKS.adc.load(Ordering::Relaxed)
}
/// RTC clock frequency.
pub fn clk_rtc_freq() -> u16 {
CLOCKS.rtc.load(Ordering::Relaxed)
2021-06-25 03:38:03 +02:00
}
2023-08-30 21:42:27 +02:00
fn start_xosc(crystal_hz: u32, delay_multiplier: u32) {
pac::XOSC
.ctrl()
.write(|w| w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ));
2023-08-30 21:59:41 +02:00
let startup_delay = (((crystal_hz / 1000) * delay_multiplier) + 128) / 256;
2022-06-12 22:15:44 +02:00
pac::XOSC.startup().write(|w| w.set_delay(startup_delay as u16));
pac::XOSC.ctrl().write(|w| {
w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ);
w.set_enable(pac::xosc::vals::Enable::ENABLE);
});
while !pac::XOSC.status().read().stable() {}
}
#[inline(always)]
2023-06-16 01:32:18 +02:00
fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> u32 {
let ref_freq = input_freq / config.refdiv as u32;
assert!(config.fbdiv >= 16 && config.fbdiv <= 320);
2023-05-07 19:49:48 +02:00
assert!(config.post_div1 >= 1 && config.post_div1 <= 7);
assert!(config.post_div2 >= 1 && config.post_div2 <= 7);
assert!(config.refdiv >= 1 && config.refdiv <= 63);
assert!(ref_freq >= 5_000_000 && ref_freq <= 800_000_000);
let vco_freq = ref_freq.saturating_mul(config.fbdiv as u32);
assert!(vco_freq >= 750_000_000 && vco_freq <= 1800_000_000);
2021-06-25 03:38:03 +02:00
// Load VCO-related dividers before starting VCO
2023-05-07 19:49:48 +02:00
p.cs().write(|w| w.set_refdiv(config.refdiv as _));
p.fbdiv_int().write(|w| w.set_fbdiv_int(config.fbdiv));
2021-06-25 03:38:03 +02:00
// Turn on PLL
let pwr = p.pwr().write(|w| {
w.set_dsmpd(true); // "nothing is achieved by setting this low"
2021-06-25 03:38:03 +02:00
w.set_pd(false);
w.set_vcopd(false);
w.set_postdivpd(true);
*w
2021-06-25 03:38:03 +02:00
});
// Wait for PLL to lock
2021-06-25 03:38:03 +02:00
while !p.cs().read().lock() {}
// Set post-dividers
2021-06-25 03:38:03 +02:00
p.prim().write(|w| {
2023-05-07 19:49:48 +02:00
w.set_postdiv1(config.post_div1);
w.set_postdiv2(config.post_div2);
2021-06-25 03:38:03 +02:00
});
// Turn on post divider
p.pwr().write(|w| {
*w = pwr;
w.set_postdivpd(false);
});
vco_freq / ((config.post_div1 * config.post_div2) as u32)
2021-06-25 03:38:03 +02:00
}
/// General purpose input clock pin.
2023-05-09 23:45:24 +02:00
pub trait GpinPin: crate::gpio::Pin {
/// Pin number.
const NR: usize;
}
macro_rules! impl_gpinpin {
($name:ident, $pin_num:expr, $gpin_num:expr) => {
impl GpinPin for crate::peripherals::$name {
const NR: usize = $gpin_num;
}
};
}
impl_gpinpin!(PIN_20, 20, 0);
impl_gpinpin!(PIN_22, 22, 1);
/// General purpose clock input driver.
pub struct Gpin<'d, T: Pin> {
gpin: PeripheralRef<'d, AnyPin>,
_phantom: PhantomData<T>,
}
impl<'d, T: Pin> Gpin<'d, T> {
/// Create new gpin driver.
pub fn new<P: GpinPin>(gpin: impl Peripheral<P = P> + 'd) -> Gpin<'d, P> {
2023-05-09 23:45:24 +02:00
into_ref!(gpin);
gpin.gpio().ctrl().write(|w| w.set_funcsel(0x08));
Gpin {
gpin: gpin.map_into(),
_phantom: PhantomData,
}
}
// fn map_into(self) -> Gpin<'d, AnyPin> {
// unsafe { core::mem::transmute(self) }
// }
}
impl<'d, T: Pin> Drop for Gpin<'d, T> {
fn drop(&mut self) {
2023-06-16 01:32:18 +02:00
self.gpin
.gpio()
2023-06-16 01:32:18 +02:00
.ctrl()
2023-06-29 02:08:55 +02:00
.write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL as _));
}
}
/// General purpose clock output pin.
2023-05-09 23:45:24 +02:00
pub trait GpoutPin: crate::gpio::Pin {
/// Pin number.
2023-05-09 23:45:24 +02:00
fn number(&self) -> usize;
}
macro_rules! impl_gpoutpin {
2023-05-09 23:45:24 +02:00
($name:ident, $gpout_num:expr) => {
impl GpoutPin for crate::peripherals::$name {
2023-05-09 23:45:24 +02:00
fn number(&self) -> usize {
$gpout_num
}
}
};
}
2023-05-09 23:45:24 +02:00
impl_gpoutpin!(PIN_21, 0);
impl_gpoutpin!(PIN_23, 1);
impl_gpoutpin!(PIN_24, 2);
impl_gpoutpin!(PIN_25, 3);
/// Gpout clock source.
#[repr(u8)]
pub enum GpoutSrc {
/// Sys PLL.
2023-06-29 02:08:55 +02:00
PllSys = ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS as _,
// Gpin0 = ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0 as _ ,
// Gpin1 = ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1 as _ ,
/// USB PLL.
2023-06-29 02:08:55 +02:00
PllUsb = ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB as _,
/// ROSC.
2023-06-29 02:08:55 +02:00
Rosc = ClkGpoutCtrlAuxsrc::ROSC_CLKSRC as _,
/// XOSC.
2023-06-29 02:08:55 +02:00
Xosc = ClkGpoutCtrlAuxsrc::XOSC_CLKSRC as _,
/// SYS.
2023-06-29 02:08:55 +02:00
Sys = ClkGpoutCtrlAuxsrc::CLK_SYS as _,
/// USB.
2023-06-29 02:08:55 +02:00
Usb = ClkGpoutCtrlAuxsrc::CLK_USB as _,
/// ADC.
2023-06-29 02:08:55 +02:00
Adc = ClkGpoutCtrlAuxsrc::CLK_ADC as _,
/// RTC.
2023-06-29 02:08:55 +02:00
Rtc = ClkGpoutCtrlAuxsrc::CLK_RTC as _,
/// REF.
2023-06-29 02:08:55 +02:00
Ref = ClkGpoutCtrlAuxsrc::CLK_REF as _,
}
/// General purpose clock output driver.
pub struct Gpout<'d, T: GpoutPin> {
gpout: PeripheralRef<'d, T>,
}
impl<'d, T: GpoutPin> Gpout<'d, T> {
/// Create new general purpose cloud output.
pub fn new(gpout: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(gpout);
gpout.gpio().ctrl().write(|w| w.set_funcsel(0x08));
Self { gpout }
}
/// Set clock divider.
pub fn set_div(&self, int: u32, frac: u8) {
2023-06-16 01:32:18 +02:00
let c = pac::CLOCKS;
c.clk_gpout_div(self.gpout.number()).write(|w| {
w.set_int(int);
w.set_frac(frac);
});
}
/// Set clock source.
pub fn set_src(&self, src: GpoutSrc) {
2023-06-16 01:32:18 +02:00
let c = pac::CLOCKS;
c.clk_gpout_ctrl(self.gpout.number()).modify(|w| {
2023-06-29 02:08:55 +02:00
w.set_auxsrc(ClkGpoutCtrlAuxsrc::from_bits(src as _));
2023-06-16 01:32:18 +02:00
});
}
/// Enable clock.
pub fn enable(&self) {
2023-06-16 01:32:18 +02:00
let c = pac::CLOCKS;
c.clk_gpout_ctrl(self.gpout.number()).modify(|w| {
w.set_enable(true);
});
}
/// Disable clock.
pub fn disable(&self) {
2023-06-16 01:32:18 +02:00
let c = pac::CLOCKS;
c.clk_gpout_ctrl(self.gpout.number()).modify(|w| {
w.set_enable(false);
});
}
2023-05-09 23:45:24 +02:00
/// Clock frequency.
2023-05-09 23:45:24 +02:00
pub fn get_freq(&self) -> u32 {
let c = pac::CLOCKS;
2023-06-16 01:32:18 +02:00
let src = c.clk_gpout_ctrl(self.gpout.number()).read().auxsrc();
2023-05-09 23:45:24 +02:00
let base = match src {
ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(),
// ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(),
// ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(),
2023-05-09 23:45:24 +02:00
ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(),
ClkGpoutCtrlAuxsrc::ROSC_CLKSRC => rosc_freq(),
2023-05-09 23:45:24 +02:00
ClkGpoutCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(),
ClkGpoutCtrlAuxsrc::CLK_SYS => clk_sys_freq(),
ClkGpoutCtrlAuxsrc::CLK_USB => clk_usb_freq(),
ClkGpoutCtrlAuxsrc::CLK_ADC => clk_adc_freq(),
ClkGpoutCtrlAuxsrc::CLK_RTC => clk_rtc_freq() as _,
2023-05-09 23:45:24 +02:00
ClkGpoutCtrlAuxsrc::CLK_REF => clk_ref_freq(),
_ => unreachable!(),
};
2023-06-16 01:32:18 +02:00
let div = c.clk_gpout_div(self.gpout.number()).read();
let int = if div.int() == 0 { 65536 } else { div.int() } as u64;
let frac = div.frac() as u64;
2023-05-09 23:45:24 +02:00
((base as u64 * 256) / (int * 256 + frac)) as u32
2023-05-09 23:45:24 +02:00
}
}
impl<'d, T: GpoutPin> Drop for Gpout<'d, T> {
fn drop(&mut self) {
2023-05-09 23:45:24 +02:00
self.disable();
2023-06-16 01:32:18 +02:00
self.gpout
.gpio()
2023-06-16 01:32:18 +02:00
.ctrl()
2023-06-29 02:08:55 +02:00
.write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL as _));
}
}
/// Random number generator based on the ROSC RANDOMBIT register.
///
/// This will not produce random values if the ROSC is stopped or run at some
/// harmonic of the bus frequency. With default clock settings these are not
/// issues.
pub struct RoscRng;
impl RoscRng {
fn next_u8() -> u8 {
let random_reg = pac::ROSC.randombit();
let mut acc = 0;
for _ in 0..u8::BITS {
acc <<= 1;
2023-06-16 01:32:18 +02:00
acc |= random_reg.read().randombit() as u8;
}
acc
}
}
impl rand_core::RngCore for RoscRng {
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
Ok(self.fill_bytes(dest))
}
fn next_u32(&mut self) -> u32 {
rand_core::impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
rand_core::impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
dest.fill_with(Self::next_u8)
}
}
/// Enter the `DORMANT` sleep state. This will stop *all* internal clocks
/// and can only be exited through resets, dormant-wake GPIO interrupts,
/// and RTC interrupts. If RTC is clocked from an internal clock source
/// it will be stopped and not function as a wakeup source.
#[cfg(target_arch = "arm")]
pub fn dormant_sleep() {
struct Set<T: Copy, F: Fn()>(Reg<T, RW>, T, F);
impl<T: Copy, F: Fn()> Drop for Set<T, F> {
fn drop(&mut self) {
self.0.write_value(self.1);
self.2();
}
}
fn set_with_post_restore<T: Copy, After: Fn(), F: FnOnce(&mut T) -> After>(
reg: Reg<T, RW>,
f: F,
) -> Set<T, impl Fn()> {
reg.modify(|w| {
let old = *w;
let after = f(w);
Set(reg, old, after)
})
}
fn set<T: Copy, F: FnOnce(&mut T)>(reg: Reg<T, RW>, f: F) -> Set<T, impl Fn()> {
set_with_post_restore(reg, |r| {
f(r);
|| ()
})
}
// disable all clocks that are not vital in preparation for disabling clock sources.
// we'll keep gpout and rtc clocks untouched, gpout because we don't care about them
// and rtc because it's a possible wakeup source. if clk_rtc is not configured for
// gpin we'll never wake from rtc, but that's what the user asked for then.
let _stop_adc = set(pac::CLOCKS.clk_adc_ctrl(), |w| w.set_enable(false));
let _stop_usb = set(pac::CLOCKS.clk_usb_ctrl(), |w| w.set_enable(false));
let _stop_peri = set(pac::CLOCKS.clk_peri_ctrl(), |w| w.set_enable(false));
// set up rosc. we could ask the use to tell us which clock source to wake from like
// the C SDK does, but that seems rather unfriendly. we *may* disturb rtc by changing
// rosc configuration if it's currently the rtc clock source, so we'll configure rosc
// to the slowest frequency to minimize that impact.
let _configure_rosc = (
set(pac::ROSC.ctrl(), |w| {
w.set_enable(pac::rosc::vals::Enable::ENABLE);
w.set_freq_range(pac::rosc::vals::FreqRange::LOW);
}),
// div=32
set(pac::ROSC.div(), |w| w.set_div(pac::rosc::vals::Div(0xaa0))),
);
while !pac::ROSC.status().read().stable() {}
// switch over to rosc as the system clock source. this will change clock sources for
// watchdog and timer clocks, but timers won't be a concern and the watchdog won't
// speed up by enough to worry about (unless it's clocked from gpin, which we don't
// support anyway).
let _switch_clk_ref = set(pac::CLOCKS.clk_ref_ctrl(), |w| {
w.set_src(pac::clocks::vals::ClkRefCtrlSrc::ROSC_CLKSRC_PH);
});
let _switch_clk_sys = set(pac::CLOCKS.clk_sys_ctrl(), |w| {
w.set_src(pac::clocks::vals::ClkSysCtrlSrc::CLK_REF);
});
// oscillator dormancy does not power down plls, we have to do that ourselves. we'll
// restore them to their prior glory when woken though since the system may be clocked
// from either (and usb/adc will probably need the USB PLL anyway)
let _stop_pll_sys = set_with_post_restore(pac::PLL_SYS.pwr(), |w| {
let wake = !w.pd() && !w.vcopd();
w.set_pd(true);
w.set_vcopd(true);
move || while wake && !pac::PLL_SYS.cs().read().lock() {}
});
let _stop_pll_usb = set_with_post_restore(pac::PLL_USB.pwr(), |w| {
let wake = !w.pd() && !w.vcopd();
w.set_pd(true);
w.set_vcopd(true);
move || while wake && !pac::PLL_USB.cs().read().lock() {}
});
// dormancy only stops the oscillator we're telling to go dormant, the other remains
// running. nothing can use xosc at this point any more. not doing this costs an 200µA.
let _stop_xosc = set_with_post_restore(pac::XOSC.ctrl(), |w| {
let wake = w.enable() == pac::xosc::vals::Enable::ENABLE;
if wake {
w.set_enable(pac::xosc::vals::Enable::DISABLE);
}
move || while wake && !pac::XOSC.status().read().stable() {}
});
let _power_down_xip_cache = set(pac::XIP_CTRL.ctrl(), |w| w.set_power_down(true));
// only power down memory if we're running from XIP (or ROM? how?).
// powering down memory otherwise would require a lot of exacting checks that
// are better done by the user in a local copy of this function.
// powering down memories saves ~100µA, so it's well worth doing.
unsafe {
let is_in_flash = {
// we can't rely on the address of this function as rust sees it since linker
// magic or even boot2 may place it into ram.
let pc: usize;
asm!(
"mov {pc}, pc",
pc = out (reg) pc
);
pc < 0x20000000
};
if is_in_flash {
// we will be powering down memories, so we must be *absolutely*
// certain that we're running entirely from XIP and registers until
// memories are powered back up again. accessing memory that's powered
// down may corrupt memory contents (see section 2.11.4 of the manual).
// additionally a 20ns wait time is needed after powering up memories
// again. rosc is likely to run at only a few MHz at most, so the
// inter-instruction delay alone will be enough to satisfy this bound.
asm!(
"ldr {old_mem}, [{mempowerdown}]",
"str {power_down_mems}, [{mempowerdown}]",
"str {coma}, [{dormant}]",
"str {old_mem}, [{mempowerdown}]",
old_mem = out (reg) _,
mempowerdown = in (reg) pac::SYSCFG.mempowerdown().as_ptr(),
power_down_mems = in (reg) 0b11111111,
dormant = in (reg) pac::ROSC.dormant().as_ptr(),
coma = in (reg) 0x636f6d61,
);
} else {
pac::ROSC.dormant().write_value(0x636f6d61);
}
}
}