2023-03-27 14:37:39 +02:00
use embassy_futures ::yield_now ;
2022-12-26 23:21:58 +01:00
use embassy_time ::{ Duration , Timer } ;
use embedded_hal_1 ::digital ::OutputPin ;
2023-03-19 16:43:46 +01:00
use futures ::FutureExt ;
2022-12-26 23:21:58 +01:00
use crate ::consts ::* ;
2023-04-02 20:19:47 +02:00
use crate ::slice8_mut ;
2022-12-26 23:21:58 +01:00
2023-02-19 16:31:33 +01:00
/// Custom Spi Trait that _only_ supports the bus operation of the cyw43
2023-03-21 19:15:54 +01:00
/// Implementors are expected to hold the CS pin low during an operation.
pub trait SpiBusCyw43 {
2023-02-19 16:31:33 +01:00
/// Issues a write command on the bus
2023-03-21 19:15:54 +01:00
/// First 32 bits of `word` are expected to be a cmd word
2023-03-27 17:24:45 +02:00
async fn cmd_write ( & mut self , write : & [ u32 ] ) -> u32 ;
2023-02-19 16:31:33 +01:00
/// Issues a read command on the bus
/// `write` is expected to be a 32 bit cmd word
/// `read` will contain the response of the device
2023-03-21 19:26:01 +01:00
/// Backplane reads have a response delay that produces one extra unspecified word at the beginning of `read`.
/// Callers that want to read `n` word from the backplane, have to provide a slice that is `n+1` words long.
2023-03-27 17:24:45 +02:00
async fn cmd_read ( & mut self , write : u32 , read : & mut [ u32 ] ) -> u32 ;
2023-03-02 19:02:32 +01:00
2023-03-27 14:37:39 +02:00
/// Wait for events from the Device. A typical implementation would wait for the IRQ pin to be high.
/// The default implementation always reports ready, resulting in active polling of the device.
async fn wait_for_event ( & mut self ) {
yield_now ( ) . await ;
}
2023-02-19 16:31:33 +01:00
}
2022-12-26 23:21:58 +01:00
pub ( crate ) struct Bus < PWR , SPI > {
backplane_window : u32 ,
pwr : PWR ,
spi : SPI ,
2023-03-27 17:24:45 +02:00
status : u32 ,
2022-12-26 23:21:58 +01:00
}
impl < PWR , SPI > Bus < PWR , SPI >
where
PWR : OutputPin ,
2023-03-21 19:15:54 +01:00
SPI : SpiBusCyw43 ,
2022-12-26 23:21:58 +01:00
{
pub ( crate ) fn new ( pwr : PWR , spi : SPI ) -> Self {
Self {
backplane_window : 0xAAAA_AAAA ,
pwr ,
spi ,
2023-03-27 17:24:45 +02:00
status : 0 ,
2022-12-26 23:21:58 +01:00
}
}
pub async fn init ( & mut self ) {
// Reset
2023-08-21 00:10:57 +02:00
debug! ( " WL_REG off/on " ) ;
2022-12-26 23:21:58 +01:00
self . pwr . set_low ( ) . unwrap ( ) ;
Timer ::after ( Duration ::from_millis ( 20 ) ) . await ;
self . pwr . set_high ( ) . unwrap ( ) ;
Timer ::after ( Duration ::from_millis ( 250 ) ) . await ;
2023-08-21 00:10:57 +02:00
debug! ( " read REG_BUS_TEST_RO " ) ;
2023-03-19 16:43:46 +01:00
while self
. read32_swapped ( REG_BUS_TEST_RO )
2023-03-27 03:33:06 +02:00
. inspect ( | v | trace! ( " {:#x} " , v ) )
2023-03-19 16:43:46 +01:00
. await
! = FEEDBEAD
{ }
2022-12-26 23:21:58 +01:00
2023-08-21 00:10:57 +02:00
debug! ( " write REG_BUS_TEST_RW " ) ;
2022-12-26 23:21:58 +01:00
self . write32_swapped ( REG_BUS_TEST_RW , TEST_PATTERN ) . await ;
2023-03-21 19:39:41 +01:00
let val = self . read32_swapped ( REG_BUS_TEST_RW ) . await ;
2023-03-27 03:33:06 +02:00
trace! ( " {:#x} " , val ) ;
2022-12-26 23:21:58 +01:00
assert_eq! ( val , TEST_PATTERN ) ;
2023-08-21 00:10:57 +02:00
debug! ( " read REG_BUS_CTRL " ) ;
2023-03-21 19:39:41 +01:00
let val = self . read32_swapped ( REG_BUS_CTRL ) . await ;
2023-03-27 03:33:06 +02:00
trace! ( " {:#010b} " , ( val & 0xff ) ) ;
2023-03-19 16:43:46 +01:00
2022-12-26 23:21:58 +01:00
// 32-bit word length, little endian (which is the default endianess).
2023-08-21 00:10:57 +02:00
// TODO: C library is uint32_t val = WORD_LENGTH_32 | ENDIAN_BIG | HIGH_SPEED_MODE | INTERRUPT_POLARITY_HIGH | WAKE_UP | 0x4 << (8 * SPI_RESPONSE_DELAY) | INTR_WITH_STATUS << (8 * SPI_STATUS_ENABLE);
debug! ( " write REG_BUS_CTRL " ) ;
2023-03-27 17:24:45 +02:00
self . write32_swapped (
REG_BUS_CTRL ,
2023-03-30 12:04:18 +02:00
WORD_LENGTH_32 | HIGH_SPEED | INTERRUPT_HIGH | WAKE_UP | STATUS_ENABLE | INTERRUPT_WITH_STATUS ,
2023-03-27 17:24:45 +02:00
)
. await ;
2022-12-26 23:21:58 +01:00
2023-08-21 00:10:57 +02:00
debug! ( " read REG_BUS_CTRL " ) ;
2023-03-21 19:39:41 +01:00
let val = self . read8 ( FUNC_BUS , REG_BUS_CTRL ) . await ;
2023-03-27 03:33:06 +02:00
trace! ( " {:#b} " , val ) ;
2023-03-19 16:43:46 +01:00
2023-08-21 00:10:57 +02:00
// TODO: C doesn't do this? i doubt it messes anything up
debug! ( " read REG_BUS_TEST_RO " ) ;
2023-03-21 19:39:41 +01:00
let val = self . read32 ( FUNC_BUS , REG_BUS_TEST_RO ) . await ;
2023-03-27 03:33:06 +02:00
trace! ( " {:#x} " , val ) ;
2022-12-26 23:21:58 +01:00
assert_eq! ( val , FEEDBEAD ) ;
2023-08-21 00:10:57 +02:00
// TODO: C doesn't do this? i doubt it messes anything up
debug! ( " read REG_BUS_TEST_RW " ) ;
2023-03-21 19:39:41 +01:00
let val = self . read32 ( FUNC_BUS , REG_BUS_TEST_RW ) . await ;
2023-03-27 03:33:06 +02:00
trace! ( " {:#x} " , val ) ;
2022-12-26 23:21:58 +01:00
assert_eq! ( val , TEST_PATTERN ) ;
2023-08-21 00:10:57 +02:00
// TODO: setting this causes total failure (watermark read test fails)
debug! ( " write SPI_RESP_DELAY_F1 CYW43_BACKPLANE_READ_PAD_LEN_BYTES " ) ;
self . write8 ( FUNC_BUS , SPI_RESP_DELAY_F1 , WHD_BUS_SPI_BACKPLANE_READ_PADD_SIZE ) . await ;
// TODO: Make sure error interrupt bits are clear?
// cyw43_write_reg_u8(self, BUS_FUNCTION, SPI_INTERRUPT_REGISTER, DATA_UNAVAILABLE | COMMAND_ERROR | DATA_ERROR | F1_OVERFLOW) != 0)
debug! ( " Make sure error interrupt bits are clear " ) ;
self . write8 ( FUNC_BUS , REG_BUS_INTERRUPT , ( IRQ_DATA_UNAVAILABLE | IRQ_COMMAND_ERROR | IRQ_DATA_ERROR | IRQ_F1_OVERFLOW ) as u8 )
. await ;
// Enable a selection of interrupts
// TODO: why not all of these F2_F3_FIFO_RD_UNDERFLOW | F2_F3_FIFO_WR_OVERFLOW | COMMAND_ERROR | DATA_ERROR | F2_PACKET_AVAILABLE | F1_OVERFLOW | F1_INTR
debug! ( " enable a selection of interrupts " ) ;
self . write16 ( FUNC_BUS , REG_BUS_INTERRUPT_ENABLE , IRQ_F2_F3_FIFO_RD_UNDERFLOW | IRQ_F2_F3_FIFO_WR_OVERFLOW | IRQ_COMMAND_ERROR | IRQ_DATA_ERROR | IRQ_F2_PACKET_AVAILABLE | IRQ_F1_OVERFLOW | IRQ_F1_INTR )
. await ;
2022-12-26 23:21:58 +01:00
}
2022-12-31 16:25:37 +01:00
pub async fn wlan_read ( & mut self , buf : & mut [ u32 ] , len_in_u8 : u32 ) {
let cmd = cmd_word ( READ , INC_ADDR , FUNC_WLAN , 0 , len_in_u8 ) ;
let len_in_u32 = ( len_in_u8 as usize + 3 ) / 4 ;
2023-03-21 19:15:54 +01:00
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_read ( cmd , & mut buf [ .. len_in_u32 ] ) . await ;
2022-12-26 23:21:58 +01:00
}
pub async fn wlan_write ( & mut self , buf : & [ u32 ] ) {
let cmd = cmd_word ( WRITE , INC_ADDR , FUNC_WLAN , 0 , buf . len ( ) as u32 * 4 ) ;
2023-02-19 16:31:33 +01:00
//TODO try to remove copy?
let mut cmd_buf = [ 0_ u32 ; 513 ] ;
cmd_buf [ 0 ] = cmd ;
cmd_buf [ 1 .. ] [ .. buf . len ( ) ] . copy_from_slice ( buf ) ;
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_write ( & cmd_buf ) . await ;
2022-12-26 23:21:58 +01:00
}
#[ allow(unused) ]
pub async fn bp_read ( & mut self , mut addr : u32 , mut data : & mut [ u8 ] ) {
// It seems the HW force-aligns the addr
// to 2 if data.len() >= 2
// to 4 if data.len() >= 4
// To simplify, enforce 4-align for now.
assert! ( addr % 4 = = 0 ) ;
2023-03-21 19:26:01 +01:00
// Backplane read buffer has one extra word for the response delay.
2023-02-19 16:31:33 +01:00
let mut buf = [ 0 u32 ; BACKPLANE_MAX_TRANSFER_SIZE / 4 + 1 ] ;
2022-12-26 23:21:58 +01:00
while ! data . is_empty ( ) {
// Ensure transfer doesn't cross a window boundary.
let window_offs = addr & BACKPLANE_ADDRESS_MASK ;
let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize ;
let len = data . len ( ) . min ( BACKPLANE_MAX_TRANSFER_SIZE ) . min ( window_remaining ) ;
self . backplane_set_window ( addr ) . await ;
let cmd = cmd_word ( READ , INC_ADDR , FUNC_BACKPLANE , window_offs , len as u32 ) ;
2023-03-21 19:26:01 +01:00
// round `buf` to word boundary, add one extra word for the response delay
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_read ( cmd , & mut buf [ .. ( len + 3 ) / 4 + 1 ] ) . await ;
2022-12-26 23:21:58 +01:00
2023-03-21 19:26:01 +01:00
// when writing out the data, we skip the response-delay byte
2023-02-19 16:31:33 +01:00
data [ .. len ] . copy_from_slice ( & slice8_mut ( & mut buf [ 1 .. ] ) [ .. len ] ) ;
2022-12-26 23:21:58 +01:00
// Advance ptr.
addr + = len as u32 ;
data = & mut data [ len .. ] ;
}
}
pub async fn bp_write ( & mut self , mut addr : u32 , mut data : & [ u8 ] ) {
// It seems the HW force-aligns the addr
// to 2 if data.len() >= 2
// to 4 if data.len() >= 4
// To simplify, enforce 4-align for now.
assert! ( addr % 4 = = 0 ) ;
2023-02-19 16:31:33 +01:00
let mut buf = [ 0 u32 ; BACKPLANE_MAX_TRANSFER_SIZE / 4 + 1 ] ;
2022-12-26 23:21:58 +01:00
while ! data . is_empty ( ) {
// Ensure transfer doesn't cross a window boundary.
let window_offs = addr & BACKPLANE_ADDRESS_MASK ;
let window_remaining = BACKPLANE_WINDOW_SIZE - window_offs as usize ;
let len = data . len ( ) . min ( BACKPLANE_MAX_TRANSFER_SIZE ) . min ( window_remaining ) ;
2023-02-19 16:31:33 +01:00
slice8_mut ( & mut buf [ 1 .. ] ) [ .. len ] . copy_from_slice ( & data [ .. len ] ) ;
2022-12-26 23:21:58 +01:00
self . backplane_set_window ( addr ) . await ;
let cmd = cmd_word ( WRITE , INC_ADDR , FUNC_BACKPLANE , window_offs , len as u32 ) ;
2023-02-19 16:31:33 +01:00
buf [ 0 ] = cmd ;
2022-12-26 23:21:58 +01:00
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_write ( & buf [ .. ( len + 3 ) / 4 + 1 ] ) . await ;
2022-12-26 23:21:58 +01:00
// Advance ptr.
addr + = len as u32 ;
data = & data [ len .. ] ;
}
}
pub async fn bp_read8 ( & mut self , addr : u32 ) -> u8 {
self . backplane_readn ( addr , 1 ) . await as u8
}
pub async fn bp_write8 ( & mut self , addr : u32 , val : u8 ) {
self . backplane_writen ( addr , val as u32 , 1 ) . await
}
pub async fn bp_read16 ( & mut self , addr : u32 ) -> u16 {
self . backplane_readn ( addr , 2 ) . await as u16
}
#[ allow(unused) ]
pub async fn bp_write16 ( & mut self , addr : u32 , val : u16 ) {
self . backplane_writen ( addr , val as u32 , 2 ) . await
}
#[ allow(unused) ]
pub async fn bp_read32 ( & mut self , addr : u32 ) -> u32 {
self . backplane_readn ( addr , 4 ) . await
}
pub async fn bp_write32 ( & mut self , addr : u32 , val : u32 ) {
self . backplane_writen ( addr , val , 4 ) . await
}
async fn backplane_readn ( & mut self , addr : u32 , len : u32 ) -> u32 {
self . backplane_set_window ( addr ) . await ;
let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK ;
if len = = 4 {
bus_addr | = BACKPLANE_ADDRESS_32BIT_FLAG
}
self . readn ( FUNC_BACKPLANE , bus_addr , len ) . await
}
async fn backplane_writen ( & mut self , addr : u32 , val : u32 , len : u32 ) {
self . backplane_set_window ( addr ) . await ;
let mut bus_addr = addr & BACKPLANE_ADDRESS_MASK ;
if len = = 4 {
bus_addr | = BACKPLANE_ADDRESS_32BIT_FLAG
}
self . writen ( FUNC_BACKPLANE , bus_addr , val , len ) . await
}
async fn backplane_set_window ( & mut self , addr : u32 ) {
let new_window = addr & ! BACKPLANE_ADDRESS_MASK ;
if ( new_window > > 24 ) as u8 ! = ( self . backplane_window > > 24 ) as u8 {
self . write8 (
FUNC_BACKPLANE ,
REG_BACKPLANE_BACKPLANE_ADDRESS_HIGH ,
( new_window > > 24 ) as u8 ,
)
. await ;
}
if ( new_window > > 16 ) as u8 ! = ( self . backplane_window > > 16 ) as u8 {
self . write8 (
FUNC_BACKPLANE ,
REG_BACKPLANE_BACKPLANE_ADDRESS_MID ,
( new_window > > 16 ) as u8 ,
)
. await ;
}
if ( new_window > > 8 ) as u8 ! = ( self . backplane_window > > 8 ) as u8 {
self . write8 (
FUNC_BACKPLANE ,
REG_BACKPLANE_BACKPLANE_ADDRESS_LOW ,
( new_window > > 8 ) as u8 ,
)
. await ;
}
self . backplane_window = new_window ;
}
pub async fn read8 ( & mut self , func : u32 , addr : u32 ) -> u8 {
self . readn ( func , addr , 1 ) . await as u8
}
pub async fn write8 ( & mut self , func : u32 , addr : u32 , val : u8 ) {
self . writen ( func , addr , val as u32 , 1 ) . await
}
pub async fn read16 ( & mut self , func : u32 , addr : u32 ) -> u16 {
self . readn ( func , addr , 2 ) . await as u16
}
#[ allow(unused) ]
pub async fn write16 ( & mut self , func : u32 , addr : u32 , val : u16 ) {
self . writen ( func , addr , val as u32 , 2 ) . await
}
pub async fn read32 ( & mut self , func : u32 , addr : u32 ) -> u32 {
self . readn ( func , addr , 4 ) . await
}
#[ allow(unused) ]
pub async fn write32 ( & mut self , func : u32 , addr : u32 , val : u32 ) {
self . writen ( func , addr , val , 4 ) . await
}
async fn readn ( & mut self , func : u32 , addr : u32 , len : u32 ) -> u32 {
let cmd = cmd_word ( READ , INC_ADDR , func , addr , len ) ;
2023-02-19 16:31:33 +01:00
let mut buf = [ 0 ; 2 ] ;
2023-03-21 19:26:01 +01:00
// if we are reading from the backplane, we need an extra word for the response delay
2023-02-19 16:31:33 +01:00
let len = if func = = FUNC_BACKPLANE { 2 } else { 1 } ;
2022-12-26 23:21:58 +01:00
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_read ( cmd , & mut buf [ .. len ] ) . await ;
2022-12-26 23:21:58 +01:00
2023-03-21 19:26:01 +01:00
// if we read from the backplane, the result is in the second word, after the response delay
2023-02-19 16:31:33 +01:00
if func = = FUNC_BACKPLANE {
buf [ 1 ]
} else {
buf [ 0 ]
}
2022-12-26 23:21:58 +01:00
}
async fn writen ( & mut self , func : u32 , addr : u32 , val : u32 , len : u32 ) {
let cmd = cmd_word ( WRITE , INC_ADDR , func , addr , len ) ;
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_write ( & [ cmd , val ] ) . await ;
2022-12-26 23:21:58 +01:00
}
async fn read32_swapped ( & mut self , addr : u32 ) -> u32 {
let cmd = cmd_word ( READ , INC_ADDR , FUNC_BUS , addr , 4 ) ;
2023-02-19 16:31:33 +01:00
let cmd = swap16 ( cmd ) ;
2022-12-26 23:21:58 +01:00
let mut buf = [ 0 ; 1 ] ;
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_read ( cmd , & mut buf ) . await ;
2022-12-26 23:21:58 +01:00
swap16 ( buf [ 0 ] )
}
async fn write32_swapped ( & mut self , addr : u32 , val : u32 ) {
let cmd = cmd_word ( WRITE , INC_ADDR , FUNC_BUS , addr , 4 ) ;
2023-02-19 16:31:33 +01:00
let buf = [ swap16 ( cmd ) , swap16 ( val ) ] ;
2022-12-26 23:21:58 +01:00
2023-03-27 17:24:45 +02:00
self . status = self . spi . cmd_write ( & buf ) . await ;
2022-12-26 23:21:58 +01:00
}
2023-03-02 19:02:32 +01:00
pub async fn wait_for_event ( & mut self ) {
self . spi . wait_for_event ( ) . await ;
}
2023-03-27 17:24:45 +02:00
pub fn status ( & self ) -> u32 {
self . status
}
2022-12-26 23:21:58 +01:00
}
fn swap16 ( x : u32 ) -> u32 {
x . rotate_left ( 16 )
}
fn cmd_word ( write : bool , incr : bool , func : u32 , addr : u32 , len : u32 ) -> u32 {
( write as u32 ) < < 31 | ( incr as u32 ) < < 30 | ( func & 0b11 ) < < 28 | ( addr & 0x1FFFF ) < < 11 | ( len & 0x7FF )
}