embassy/embassy-nrf/src/rtc.rs

265 lines
7.8 KiB
Rust
Raw Normal View History

use core::cell::Cell;
use core::ops::Deref;
use core::sync::atomic::{AtomicU32, Ordering};
use embassy::time::Clock;
2020-09-25 23:38:42 +02:00
use crate::fmt::*;
use crate::interrupt;
2020-12-29 01:05:28 +01:00
use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt};
use crate::pac::rtc0;
fn calc_now(period: u32, counter: u32) -> u64 {
let shift = ((period & 1) << 23) + 0x400000;
let counter_shifted = (counter + shift) & 0xFFFFFF;
((period as u64) << 23) + counter_shifted as u64 - 0x400000
}
fn compare_n(n: usize) -> u32 {
1 << (n + 16)
}
mod test {
use super::*;
#[test]
fn test_calc_now() {
assert_eq!(calc_now(0, 0x000000), 0x0_000000);
assert_eq!(calc_now(0, 0x000001), 0x0_000001);
assert_eq!(calc_now(0, 0x7FFFFF), 0x0_7FFFFF);
assert_eq!(calc_now(1, 0x7FFFFF), 0x0_7FFFFF);
assert_eq!(calc_now(0, 0x800000), 0x0_800000);
assert_eq!(calc_now(1, 0x800000), 0x0_800000);
assert_eq!(calc_now(1, 0x800001), 0x0_800001);
assert_eq!(calc_now(1, 0xFFFFFF), 0x0_FFFFFF);
assert_eq!(calc_now(2, 0xFFFFFF), 0x0_FFFFFF);
assert_eq!(calc_now(1, 0x000000), 0x1_000000);
assert_eq!(calc_now(2, 0x000000), 0x1_000000);
}
}
2020-09-25 23:25:49 +02:00
struct AlarmState {
timestamp: Cell<u64>,
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
2020-09-25 23:25:49 +02:00
}
impl AlarmState {
fn new() -> Self {
Self {
timestamp: Cell::new(u64::MAX),
callback: Cell::new(None),
}
}
}
const ALARM_COUNT: usize = 3;
2020-12-29 01:05:28 +01:00
pub struct RTC<T: Instance> {
rtc: T,
2020-12-29 01:05:28 +01:00
irq: T::Interrupt,
/// Number of 2^23 periods elapsed since boot.
///
/// This is incremented by 1
/// - on overflow (counter value 0)
/// - on "midway" between overflows (at counter value 0x800000)
///
/// Therefore: When even, counter is in 0..0x7fffff. When odd, counter is in 0x800000..0xFFFFFF
/// This allows for now() to return the correct value even if it races an overflow.
///
/// It overflows on 2^32 * 2^23 / 32768 seconds of uptime, which is 34865 years.
period: AtomicU32,
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
2020-09-25 23:25:49 +02:00
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
}
2020-12-29 01:05:28 +01:00
unsafe impl<T: Instance> Send for RTC<T> {}
unsafe impl<T: Instance> Sync for RTC<T> {}
2020-09-24 22:41:52 +02:00
impl<T: Instance> RTC<T> {
2020-12-29 01:05:28 +01:00
pub fn new(rtc: T, irq: T::Interrupt) -> Self {
Self {
rtc,
2020-12-29 01:05:28 +01:00
irq,
period: AtomicU32::new(0),
2020-09-25 23:25:49 +02:00
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
}
}
pub fn start(&'static self) {
self.rtc.cc[3].write(|w| unsafe { w.bits(0x800000) });
self.rtc.intenset.write(|w| {
let w = w.ovrflw().set();
let w = w.compare3().set();
w
});
2020-10-31 23:03:09 +01:00
self.rtc.tasks_clear.write(|w| unsafe { w.bits(1) });
self.rtc.tasks_start.write(|w| unsafe { w.bits(1) });
// Wait for clear
while self.rtc.counter.read().bits() != 0 {}
self.irq.set_handler(
|ptr| unsafe {
let this = &*(ptr as *const () as *const Self);
this.on_interrupt();
},
self as *const _ as *mut _,
);
2020-12-29 01:05:28 +01:00
self.irq.unpend();
self.irq.enable();
}
fn on_interrupt(&self) {
if self.rtc.events_ovrflw.read().bits() == 1 {
self.rtc.events_ovrflw.write(|w| w);
self.next_period();
}
if self.rtc.events_compare[3].read().bits() == 1 {
self.rtc.events_compare[3].write(|w| w);
self.next_period();
}
2020-09-25 23:25:49 +02:00
for n in 0..ALARM_COUNT {
if self.rtc.events_compare[n].read().bits() == 1 {
self.rtc.events_compare[n].write(|w| w);
2020-09-25 23:25:49 +02:00
interrupt::free(|cs| {
self.trigger_alarm(n, cs);
})
}
}
}
fn next_period(&self) {
interrupt::free(|cs| {
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
let t = (period as u64) << 23;
for n in 0..ALARM_COUNT {
let alarm = &self.alarms.borrow(cs)[n];
2020-09-25 23:25:49 +02:00
let at = alarm.timestamp.get();
2020-09-25 23:25:49 +02:00
let diff = at - t;
if diff < 0xc00000 {
self.rtc.cc[n].write(|w| unsafe { w.bits(at as u32 & 0xFFFFFF) });
self.rtc.intenset.write(|w| unsafe { w.bits(compare_n(n)) });
2020-09-25 23:25:49 +02:00
}
}
})
}
2020-09-25 23:25:49 +02:00
fn trigger_alarm(&self, n: usize, cs: &CriticalSection) {
self.rtc.intenclr.write(|w| unsafe { w.bits(compare_n(n)) });
2020-09-25 23:25:49 +02:00
let alarm = &self.alarms.borrow(cs)[n];
alarm.timestamp.set(u64::MAX);
// Call after clearing alarm, so the callback can set another alarm.
alarm.callback.get().map(|(f, ctx)| f(ctx));
}
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
interrupt::free(|cs| {
2020-09-25 23:25:49 +02:00
let alarm = &self.alarms.borrow(cs)[n];
alarm.callback.set(Some((callback, ctx)));
2020-09-25 23:25:49 +02:00
})
}
fn set_alarm(&self, n: usize, timestamp: u64) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n];
alarm.timestamp.set(timestamp);
2020-09-24 22:41:52 +02:00
let t = self.now();
2020-09-24 23:26:24 +02:00
if timestamp <= t {
2020-09-25 23:25:49 +02:00
self.trigger_alarm(n, cs);
return;
}
2020-09-24 23:26:24 +02:00
let diff = timestamp - t;
if diff < 0xc00000 {
// nrf52 docs say:
// If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event.
// To workaround this, we never write a timestamp smaller than N+3.
// N+2 is not safe because rtc can tick from N to N+1 between calling now() and writing cc.
let safe_timestamp = timestamp.max(t + 3);
self.rtc.cc[n].write(|w| unsafe { w.bits(safe_timestamp as u32 & 0xFFFFFF) });
self.rtc.intenset.write(|w| unsafe { w.bits(compare_n(n)) });
} else {
self.rtc.intenclr.write(|w| unsafe { w.bits(compare_n(n)) });
}
})
}
2020-09-24 23:26:24 +02:00
pub fn alarm0(&'static self) -> Alarm<T> {
2020-09-25 23:25:49 +02:00
Alarm { n: 0, rtc: self }
}
pub fn alarm1(&'static self) -> Alarm<T> {
Alarm { n: 1, rtc: self }
}
pub fn alarm2(&'static self) -> Alarm<T> {
Alarm { n: 2, rtc: self }
2020-09-24 23:26:24 +02:00
}
}
2020-09-25 23:38:42 +02:00
impl<T: Instance> embassy::time::Clock for RTC<T> {
fn now(&self) -> u64 {
let counter = self.rtc.counter.read().bits();
let period = self.period.load(Ordering::Relaxed);
calc_now(period, counter)
}
}
pub struct Alarm<T: Instance> {
2020-09-25 23:25:49 +02:00
n: usize,
rtc: &'static RTC<T>,
}
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
self.rtc.set_alarm_callback(self.n, callback, ctx);
2020-09-25 23:25:49 +02:00
}
fn set(&self, timestamp: u64) {
self.rtc.set_alarm(self.n, timestamp);
2020-09-24 22:41:52 +02:00
}
fn clear(&self) {
2020-09-25 23:25:49 +02:00
self.rtc.set_alarm(self.n, u64::MAX);
}
}
mod sealed {
pub trait Instance {}
impl Instance for crate::pac::RTC0 {}
impl Instance for crate::pac::RTC1 {}
#[cfg(any(feature = "52832", feature = "52833", feature = "52840"))]
impl Instance for crate::pac::RTC2 {}
}
/// Implemented by all RTC instances.
pub trait Instance:
sealed::Instance + Deref<Target = rtc0::RegisterBlock> + Sized + 'static
{
/// The interrupt associated with this RTC instance.
2020-12-29 01:05:28 +01:00
type Interrupt: OwnedInterrupt;
}
impl Instance for crate::pac::RTC0 {
type Interrupt = interrupt::RTC0Interrupt;
}
impl Instance for crate::pac::RTC1 {
type Interrupt = interrupt::RTC1Interrupt;
}
#[cfg(any(feature = "52832", feature = "52833", feature = "52840"))]
impl Instance for crate::pac::RTC2 {
type Interrupt = interrupt::RTC2Interrupt;
}