424 lines
14 KiB
Rust
Raw Normal View History

2023-03-07 10:46:59 +01:00
#![feature(async_fn_in_trait)]
#![allow(incomplete_features)]
#![no_std]
#![warn(missing_docs)]
#![doc = include_str!("../README.md")]
mod fmt;
mod boot_loader;
mod firmware_updater;
mod partition;
pub use boot_loader::{BootError, BootFlash, BootLoader, Flash, FlashConfig, MultiFlashConfig, SingleFlashConfig};
pub use firmware_updater::{FirmwareUpdater, FirmwareUpdaterError};
pub use partition::Partition;
pub(crate) const BOOT_MAGIC: u8 = 0xD0;
pub(crate) const SWAP_MAGIC: u8 = 0xF0;
/// The state of the bootloader after running prepare.
#[derive(PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum State {
/// Bootloader is ready to boot the active partition.
Boot,
/// Bootloader has swapped the active partition with the dfu partition and will attempt boot.
Swap,
}
/// Buffer aligned to 32 byte boundary, largest known alignment requirement for embassy-boot.
#[repr(align(32))]
pub struct AlignedBuffer<const N: usize>(pub [u8; N]);
impl<const N: usize> AsRef<[u8]> for AlignedBuffer<N> {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl<const N: usize> AsMut<[u8]> for AlignedBuffer<N> {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
#[cfg(test)]
mod tests {
use core::convert::Infallible;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
use futures::executor::block_on;
2022-06-12 22:15:44 +02:00
use super::*;
/*
#[test]
fn test_bad_magic() {
let mut flash = MemFlash([0xff; 131072]);
let mut flash = SingleFlashConfig::new(&mut flash);
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
assert_eq!(
bootloader.prepare_boot(&mut flash),
Err(BootError::BadMagic)
);
}
*/
#[test]
fn test_boot_state() {
const STATE: Partition = Partition::new(0, 4096);
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
flash.0[0..4].copy_from_slice(&[BOOT_MAGIC; 4]);
let mut flash = SingleFlashConfig::new(&mut flash);
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Boot,
bootloader.prepare_boot(&mut flash, &mut magic, &mut page).unwrap()
);
}
#[test]
#[cfg(not(feature = "_verify"))]
fn test_swap_state() {
const STATE: Partition = Partition::new(0, 4096);
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
let mut flash = MemFlash::<131072, 4096, 4>([0xff; 131072]);
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
let mut aligned = [0; 4];
for i in ACTIVE.from..ACTIVE.to {
flash.0[i] = original[i - ACTIVE.from];
}
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, chunk, &mut flash)).unwrap();
offset += chunk.len();
}
block_on(updater.mark_updated(&mut flash, &mut aligned)).unwrap();
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page)
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(flash.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
// Running again should cause a revert
assert_eq!(
State::Swap,
bootloader
.prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page)
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i);
}
// Last page is untouched
for i in DFU.from..DFU.to - 4096 {
assert_eq!(flash.0[i], update[i - DFU.from], "Index {}", i);
}
// Mark as booted
block_on(updater.mark_booted(&mut flash, &mut aligned)).unwrap();
assert_eq!(
State::Boot,
bootloader
.prepare_boot(&mut SingleFlashConfig::new(&mut flash), &mut magic, &mut page)
.unwrap()
);
}
#[test]
#[cfg(not(feature = "_verify"))]
fn test_separate_flash_active_page_biggest() {
const STATE: Partition = Partition::new(2048, 4096);
const ACTIVE: Partition = Partition::new(4096, 16384);
const DFU: Partition = Partition::new(0, 16384);
let mut active = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 2048, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let mut aligned = [0; 4];
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
active.0[i] = original[i - ACTIVE.from];
}
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(2048) {
block_on(updater.write_firmware(offset, chunk, &mut dfu)).unwrap();
offset += chunk.len();
}
block_on(updater.mark_updated(&mut state, &mut aligned)).unwrap();
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Swap,
bootloader
.prepare_boot(
&mut MultiFlashConfig::new(&mut active, &mut state, &mut dfu),
&mut magic,
&mut page
)
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
}
#[test]
#[cfg(not(feature = "_verify"))]
fn test_separate_flash_dfu_page_biggest() {
const STATE: Partition = Partition::new(2048, 4096);
const ACTIVE: Partition = Partition::new(4096, 16384);
const DFU: Partition = Partition::new(0, 16384);
let mut aligned = [0; 4];
let mut active = MemFlash::<16384, 2048, 4>([0xff; 16384]);
let mut dfu = MemFlash::<16384, 4096, 8>([0xff; 16384]);
let mut state = MemFlash::<4096, 128, 4>([0xff; 4096]);
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
active.0[i] = original[i - ACTIVE.from];
}
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut offset = 0;
for chunk in update.chunks(4096) {
block_on(updater.write_firmware(offset, chunk, &mut dfu)).unwrap();
offset += chunk.len();
}
block_on(updater.mark_updated(&mut state, &mut aligned)).unwrap();
let mut bootloader: BootLoader = BootLoader::new(ACTIVE, DFU, STATE);
let mut magic = [0; 4];
let mut page = [0; 4096];
assert_eq!(
State::Swap,
bootloader
.prepare_boot(
&mut MultiFlashConfig::new(&mut active, &mut state, &mut dfu,),
&mut magic,
&mut page
)
.unwrap()
);
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(active.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(dfu.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
}
#[test]
#[cfg(feature = "_verify")]
fn test_verify() {
// The following key setup is based on:
// https://docs.rs/ed25519-dalek/latest/ed25519_dalek/#example
use ed25519_dalek::Keypair;
use rand::rngs::OsRng;
let mut csprng = OsRng {};
let keypair: Keypair = Keypair::generate(&mut csprng);
use ed25519_dalek::{Digest, Sha512, Signature, Signer};
let firmware: &[u8] = b"This are bytes that would otherwise be firmware bytes for DFU.";
let mut digest = Sha512::new();
digest.update(&firmware);
let message = digest.finalize();
let signature: Signature = keypair.sign(&message);
use ed25519_dalek::PublicKey;
let public_key: PublicKey = keypair.public;
// Setup flash
const STATE: Partition = Partition::new(0, 4096);
const DFU: Partition = Partition::new(4096, 8192);
let mut flash = MemFlash::<8192, 4096, 4>([0xff; 8192]);
let firmware_len = firmware.len();
let mut write_buf = [0; 4096];
write_buf[0..firmware_len].copy_from_slice(firmware);
NorFlash::write(&mut flash, DFU.from as u32, &write_buf).unwrap();
// On with the test
let mut updater = FirmwareUpdater::new(DFU, STATE);
let mut aligned = [0; 4];
assert!(block_on(updater.verify_and_mark_updated(
&mut flash,
&public_key.to_bytes(),
&signature.to_bytes(),
firmware_len as u32,
&mut aligned,
))
.is_ok());
}
2023-03-31 10:28:47 +02:00
pub struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize>(pub [u8; SIZE]);
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
2022-06-12 22:15:44 +02:00
assert!(to % ERASE_SIZE == 0, "To: {}, erase size: {}", to, ERASE_SIZE);
for i in from..to {
self.0[i] = 0xFF;
}
Ok(())
}
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
assert!(data.len() % WRITE_SIZE == 0);
assert!(offset as usize % WRITE_SIZE == 0);
assert!(offset as usize + data.len() <= SIZE);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = Infallible;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> super::Flash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const BLOCK_SIZE: usize = ERASE_SIZE;
const ERASE_VALUE: u8 = 0xFF;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
2023-03-07 10:46:59 +01:00
async fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
2023-03-07 10:46:59 +01:00
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
assert!(to % ERASE_SIZE == 0);
for i in from..to {
self.0[i] = 0xFF;
}
2023-03-07 10:46:59 +01:00
Ok(())
}
2023-03-07 10:46:59 +01:00
async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
info!("Writing {} bytes to 0x{:x}", data.len(), offset);
2023-03-07 10:46:59 +01:00
assert!(data.len() % WRITE_SIZE == 0);
assert!(offset as usize % WRITE_SIZE == 0);
assert!(
offset as usize + data.len() <= SIZE,
"OFFSET: {}, LEN: {}, FLASH SIZE: {}",
offset,
data.len(),
SIZE
);
2023-03-07 10:46:59 +01:00
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
}