Rename embassy-hal-common to embassy-hal-internal, document it's for internal use only. (#1700)

This commit is contained in:
Dario Nieuwenhuis
2023-07-28 13:23:22 +02:00
committed by GitHub
parent 0ced8400d0
commit 036e6ae30c
110 changed files with 150 additions and 133 deletions

View File

@ -0,0 +1,29 @@
[package]
name = "embassy-hal-internal"
version = "0.1.0"
edition = "2021"
license = "MIT OR Apache-2.0"
[features]
# Define the number of NVIC priority bits.
prio-bits-0 = []
prio-bits-1 = []
prio-bits-2 = []
prio-bits-3 = []
prio-bits-4 = []
prio-bits-5 = []
prio-bits-6 = []
prio-bits-7 = []
prio-bits-8 = []
cortex-m = ["dep:cortex-m", "dep:critical-section"]
[dependencies]
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
num-traits = { version = "0.2.14", default-features = false }
cortex-m = { version = "0.7.6", optional = true }
critical-section = { version = "1", optional = true }

View File

@ -0,0 +1,16 @@
# embassy-macros
An [Embassy](https://embassy.dev) project.
Internal implementation details for Embassy HALs. DO NOT USE DIRECTLY. Embassy HALs (`embassy-nrf`, `embassy-stm32`, `embassy-rp`) already reexport
everything you need to use them effectively.
## License
This work is licensed under either of
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
<http://www.apache.org/licenses/LICENSE-2.0>)
- MIT license ([LICENSE-MIT](LICENSE-MIT) or <http://opensource.org/licenses/MIT>)
at your option.

View File

@ -0,0 +1,29 @@
use std::env;
fn main() {
let target = env::var("TARGET").unwrap();
if target.starts_with("thumbv6m-") {
println!("cargo:rustc-cfg=cortex_m");
println!("cargo:rustc-cfg=armv6m");
} else if target.starts_with("thumbv7m-") {
println!("cargo:rustc-cfg=cortex_m");
println!("cargo:rustc-cfg=armv7m");
} else if target.starts_with("thumbv7em-") {
println!("cargo:rustc-cfg=cortex_m");
println!("cargo:rustc-cfg=armv7m");
println!("cargo:rustc-cfg=armv7em"); // (not currently used)
} else if target.starts_with("thumbv8m.base") {
println!("cargo:rustc-cfg=cortex_m");
println!("cargo:rustc-cfg=armv8m");
println!("cargo:rustc-cfg=armv8m_base");
} else if target.starts_with("thumbv8m.main") {
println!("cargo:rustc-cfg=cortex_m");
println!("cargo:rustc-cfg=armv8m");
println!("cargo:rustc-cfg=armv8m_main");
}
if target.ends_with("-eabihf") {
println!("cargo:rustc-cfg=has_fpu");
}
}

View File

@ -0,0 +1,556 @@
use core::slice;
use core::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
/// Atomic reusable ringbuffer
///
/// This ringbuffer implementation is designed to be stored in a `static`,
/// therefore all methods take `&self` and not `&mut self`.
///
/// It is "reusable": when created it has no backing buffer, you can give it
/// one with `init` and take it back with `deinit`, and init it again in the
/// future if needed. This is very non-idiomatic, but helps a lot when storing
/// it in a `static`.
///
/// One concurrent writer and one concurrent reader are supported, even at
/// different execution priorities (like main and irq).
pub struct RingBuffer {
pub buf: AtomicPtr<u8>,
pub len: AtomicUsize,
// start and end wrap at len*2, not at len.
// This allows distinguishing "full" and "empty".
// full is when start+len == end (modulo len*2)
// empty is when start == end
//
// This avoids having to consider the ringbuffer "full" at len-1 instead of len.
// The usual solution is adding a "full" flag, but that can't be made atomic
pub start: AtomicUsize,
pub end: AtomicUsize,
}
pub struct Reader<'a>(&'a RingBuffer);
pub struct Writer<'a>(&'a RingBuffer);
impl RingBuffer {
/// Create a new empty ringbuffer.
pub const fn new() -> Self {
Self {
buf: AtomicPtr::new(core::ptr::null_mut()),
len: AtomicUsize::new(0),
start: AtomicUsize::new(0),
end: AtomicUsize::new(0),
}
}
/// Initialize the ring buffer with a buffer.
///
/// # Safety
/// - The buffer (`buf .. buf+len`) must be valid memory until `deinit` is called.
/// - Must not be called concurrently with any other methods.
pub unsafe fn init(&self, buf: *mut u8, len: usize) {
// Ordering: it's OK to use `Relaxed` because this is not called
// concurrently with other methods.
self.buf.store(buf, Ordering::Relaxed);
self.len.store(len, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
/// Deinitialize the ringbuffer.
///
/// After calling this, the ringbuffer becomes empty, as if it was
/// just created with `new()`.
///
/// # Safety
/// - Must not be called concurrently with any other methods.
pub unsafe fn deinit(&self) {
// Ordering: it's OK to use `Relaxed` because this is not called
// concurrently with other methods.
self.len.store(0, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
/// Create a reader.
///
/// # Safety
///
/// Only one reader can exist at a time.
pub unsafe fn reader(&self) -> Reader<'_> {
Reader(self)
}
/// Create a writer.
///
/// # Safety
///
/// Only one writer can exist at a time.
pub unsafe fn writer(&self) -> Writer<'_> {
Writer(self)
}
pub fn len(&self) -> usize {
self.len.load(Ordering::Relaxed)
}
pub fn is_full(&self) -> bool {
let len = self.len.load(Ordering::Relaxed);
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
self.wrap(start + len) == end
}
pub fn is_empty(&self) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
start == end
}
fn wrap(&self, mut n: usize) -> usize {
let len = self.len.load(Ordering::Relaxed);
if n >= len * 2 {
n -= len * 2
}
n
}
}
impl<'a> Writer<'a> {
/// Push data into the buffer in-place.
///
/// The closure `f` is called with a free part of the buffer, it must write
/// some data to it and return the amount of bytes written.
pub fn push(&mut self, f: impl FnOnce(&mut [u8]) -> usize) -> usize {
let (p, n) = self.push_buf();
let buf = unsafe { slice::from_raw_parts_mut(p, n) };
let n = f(buf);
self.push_done(n);
n
}
/// Push one data byte.
///
/// Returns true if pushed successfully.
pub fn push_one(&mut self, val: u8) -> bool {
let n = self.push(|f| match f {
[] => 0,
[x, ..] => {
*x = val;
1
}
});
n != 0
}
/// Get a buffer where data can be pushed to.
///
/// Equivalent to [`Self::push_buf`] but returns a slice.
pub fn push_slice(&mut self) -> &mut [u8] {
let (data, len) = self.push_buf();
unsafe { slice::from_raw_parts_mut(data, len) }
}
/// Get up to two buffers where data can be pushed to.
///
/// Equivalent to [`Self::push_bufs`] but returns slices.
pub fn push_slices(&mut self) -> [&mut [u8]; 2] {
let [(d0, l0), (d1, l1)] = self.push_bufs();
unsafe { [slice::from_raw_parts_mut(d0, l0), slice::from_raw_parts_mut(d1, l1)] }
}
/// Get a buffer where data can be pushed to.
///
/// Write data to the start of the buffer, then call `push_done` with
/// however many bytes you've pushed.
///
/// The buffer is suitable to DMA to.
///
/// If the ringbuf is full, size=0 will be returned.
///
/// The buffer stays valid as long as no other `Writer` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn push_buf(&mut self) -> (*mut u8, usize) {
// Ordering: popping writes `start` last, so we read `start` first.
// Read it with Acquire ordering, so that the next accesses can't be reordered up past it.
let mut start = self.0.start.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let mut end = self.0.end.load(Ordering::Relaxed);
let empty = start == end;
if start >= len {
start -= len
}
if end >= len {
end -= len
}
if start == end && !empty {
// full
return (buf, 0);
}
let n = if start > end { start - end } else { len - end };
trace!(" ringbuf: push_buf {:?}..{:?}", end, end + n);
(unsafe { buf.add(end) }, n)
}
/// Get up to two buffers where data can be pushed to.
///
/// Write data starting at the beginning of the first buffer, then call
/// `push_done` with however many bytes you've pushed.
///
/// The buffers are suitable to DMA to.
///
/// If the ringbuf is full, both buffers will be zero length.
/// If there is only area available, the second buffer will be zero length.
///
/// The buffer stays valid as long as no other `Writer` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn push_bufs(&mut self) -> [(*mut u8, usize); 2] {
// Ordering: as per push_buf()
let mut start = self.0.start.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let mut end = self.0.end.load(Ordering::Relaxed);
let empty = start == end;
if start >= len {
start -= len
}
if end >= len {
end -= len
}
if start == end && !empty {
// full
return [(buf, 0), (buf, 0)];
}
let n0 = if start > end { start - end } else { len - end };
let n1 = if start <= end { start } else { 0 };
trace!(" ringbuf: push_bufs [{:?}..{:?}, {:?}..{:?}]", end, end + n0, 0, n1);
[(unsafe { buf.add(end) }, n0), (buf, n1)]
}
pub fn push_done(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
let end = self.0.end.load(Ordering::Relaxed);
// Ordering: write `end` last, with Release ordering.
// The ordering ensures no preceding memory accesses (such as writing
// the actual data in the buffer) can be reordered down past it, which
// will guarantee the reader sees them after reading from `end`.
self.0.end.store(self.0.wrap(end + n), Ordering::Release);
}
}
impl<'a> Reader<'a> {
/// Pop data from the buffer in-place.
///
/// The closure `f` is called with the next data, it must process
/// some data from it and return the amount of bytes processed.
pub fn pop(&mut self, f: impl FnOnce(&[u8]) -> usize) -> usize {
let (p, n) = self.pop_buf();
let buf = unsafe { slice::from_raw_parts(p, n) };
let n = f(buf);
self.pop_done(n);
n
}
/// Pop one data byte.
///
/// Returns true if popped successfully.
pub fn pop_one(&mut self) -> Option<u8> {
let mut res = None;
self.pop(|f| match f {
&[] => 0,
&[x, ..] => {
res = Some(x);
1
}
});
res
}
/// Get a buffer where data can be popped from.
///
/// Equivalent to [`Self::pop_buf`] but returns a slice.
pub fn pop_slice(&mut self) -> &mut [u8] {
let (data, len) = self.pop_buf();
unsafe { slice::from_raw_parts_mut(data, len) }
}
/// Get a buffer where data can be popped from.
///
/// Read data from the start of the buffer, then call `pop_done` with
/// however many bytes you've processed.
///
/// The buffer is suitable to DMA from.
///
/// If the ringbuf is empty, size=0 will be returned.
///
/// The buffer stays valid as long as no other `Reader` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn pop_buf(&mut self) -> (*mut u8, usize) {
// Ordering: pushing writes `end` last, so we read `end` first.
// Read it with Acquire ordering, so that the next accesses can't be reordered up past it.
// This is needed to guarantee we "see" the data written by the writer.
let mut end = self.0.end.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let mut start = self.0.start.load(Ordering::Relaxed);
if start == end {
return (buf, 0);
}
if start >= len {
start -= len
}
if end >= len {
end -= len
}
let n = if end > start { end - start } else { len - start };
trace!(" ringbuf: pop_buf {:?}..{:?}", start, start + n);
(unsafe { buf.add(start) }, n)
}
pub fn pop_done(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
let start = self.0.start.load(Ordering::Relaxed);
// Ordering: write `start` last, with Release ordering.
// The ordering ensures no preceding memory accesses (such as reading
// the actual data) can be reordered down past it. This is necessary
// because writing to `start` is effectively freeing the read part of the
// buffer, which "gives permission" to the writer to write to it again.
// Therefore, all buffer accesses must be completed before this.
self.0.start.store(self.0.wrap(start + n), Ordering::Release);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn push_pop() {
let mut b = [0; 4];
let rb = RingBuffer::new();
unsafe {
rb.init(b.as_mut_ptr(), 4);
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), false);
rb.writer().push(|buf| {
assert_eq!(4, buf.len());
buf[0] = 1;
buf[1] = 2;
buf[2] = 3;
buf[3] = 4;
4
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
rb.writer().push(|buf| {
// If it's full, we can push 0 bytes.
assert_eq!(0, buf.len());
0
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
rb.reader().pop(|buf| {
assert_eq!(4, buf.len());
assert_eq!(1, buf[0]);
1
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
0
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
assert_eq!(2, buf[0]);
assert_eq!(3, buf[1]);
2
});
rb.reader().pop(|buf| {
assert_eq!(1, buf.len());
assert_eq!(4, buf[0]);
1
});
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(0, buf.len());
0
});
rb.writer().push(|buf| {
assert_eq!(4, buf.len());
buf[0] = 10;
1
});
rb.writer().push(|buf| {
assert_eq!(3, buf.len());
buf[0] = 11;
buf[1] = 12;
2
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.writer().push(|buf| {
assert_eq!(1, buf.len());
buf[0] = 13;
1
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
}
}
#[test]
fn zero_len() {
let rb = RingBuffer::new();
unsafe {
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), true);
rb.writer().push(|buf| {
assert_eq!(0, buf.len());
0
});
rb.reader().pop(|buf| {
assert_eq!(0, buf.len());
0
});
}
}
#[test]
fn push_slices() {
let mut b = [0; 4];
let rb = RingBuffer::new();
unsafe {
rb.init(b.as_mut_ptr(), 4);
/* push 3 -> [1 2 3 x] */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(4, ps[0].len());
assert_eq!(0, ps[1].len());
ps[0][0] = 1;
ps[0][1] = 2;
ps[0][2] = 3;
w.push_done(3);
drop(w);
/* pop 2 -> [x x 3 x] */
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
assert_eq!(1, buf[0]);
assert_eq!(2, buf[1]);
assert_eq!(3, buf[2]);
2
});
/* push 3 -> [5 6 3 4] */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(1, ps[0].len());
assert_eq!(2, ps[1].len());
ps[0][0] = 4;
ps[1][0] = 5;
ps[1][1] = 6;
w.push_done(3);
drop(w);
/* buf is now full */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(0, ps[0].len());
assert_eq!(0, ps[1].len());
/* pop 2 -> [5 6 x x] */
rb.reader().pop(|buf| {
assert_eq!(2, buf.len());
assert_eq!(3, buf[0]);
assert_eq!(4, buf[1]);
2
});
/* should now have one push slice again */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(2, ps[0].len());
assert_eq!(0, ps[1].len());
drop(w);
/* pop 2 -> [x x x x] */
rb.reader().pop(|buf| {
assert_eq!(2, buf.len());
assert_eq!(5, buf[0]);
assert_eq!(6, buf[1]);
2
});
/* should now have two push slices */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(2, ps[0].len());
assert_eq!(2, ps[1].len());
drop(w);
/* make sure we exercise all wrap around cases properly */
for _ in 0..10 {
/* should be empty, push 1 */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(4, ps[0].len() + ps[1].len());
w.push_done(1);
drop(w);
/* should have 1 element */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(3, ps[0].len() + ps[1].len());
drop(w);
/* pop 1 */
rb.reader().pop(|buf| {
assert_eq!(1, buf.len());
1
});
}
}
}
}

View File

@ -0,0 +1,51 @@
use core::mem;
use core::mem::MaybeUninit;
#[must_use = "to delay the drop handler invokation to the end of the scope"]
pub struct OnDrop<F: FnOnce()> {
f: MaybeUninit<F>,
}
impl<F: FnOnce()> OnDrop<F> {
pub fn new(f: F) -> Self {
Self { f: MaybeUninit::new(f) }
}
pub fn defuse(self) {
mem::forget(self)
}
}
impl<F: FnOnce()> Drop for OnDrop<F> {
fn drop(&mut self) {
unsafe { self.f.as_ptr().read()() }
}
}
/// An explosive ordinance that panics if it is improperly disposed of.
///
/// This is to forbid dropping futures, when there is absolutely no other choice.
///
/// To correctly dispose of this device, call the [defuse](struct.DropBomb.html#method.defuse)
/// method before this object is dropped.
#[must_use = "to delay the drop bomb invokation to the end of the scope"]
pub struct DropBomb {
_private: (),
}
impl DropBomb {
pub fn new() -> Self {
Self { _private: () }
}
/// Defuses the bomb, rendering it safe to drop.
pub fn defuse(self) {
mem::forget(self)
}
}
impl Drop for DropBomb {
fn drop(&mut self) {
panic!("boom")
}
}

View File

@ -0,0 +1,225 @@
#![macro_use]
#![allow(unused_macros)]
#[cfg(all(feature = "defmt", feature = "log"))]
compile_error!("You may not enable both `defmt` and `log` features.");
macro_rules! assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert!($($x)*);
}
};
}
macro_rules! assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_eq!($($x)*);
}
};
}
macro_rules! assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_ne!($($x)*);
}
};
}
macro_rules! debug_assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert!($($x)*);
}
};
}
macro_rules! debug_assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_eq!($($x)*);
}
};
}
macro_rules! debug_assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_ne!($($x)*);
}
};
}
macro_rules! todo {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::todo!($($x)*);
#[cfg(feature = "defmt")]
::defmt::todo!($($x)*);
}
};
}
macro_rules! unreachable {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::unreachable!($($x)*);
#[cfg(feature = "defmt")]
::defmt::unreachable!($($x)*);
}
};
}
macro_rules! panic {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::panic!($($x)*);
#[cfg(feature = "defmt")]
::defmt::panic!($($x)*);
}
};
}
macro_rules! trace {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::trace!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::trace!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! debug {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::debug!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::debug!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! info {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::info!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::info!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! warn {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::warn!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::warn!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! error {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::error!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::error!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
#[cfg(feature = "defmt")]
macro_rules! unwrap {
($($x:tt)*) => {
::defmt::unwrap!($($x)*)
};
}
#[cfg(not(feature = "defmt"))]
macro_rules! unwrap {
($arg:expr) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {:?}", ::core::stringify!($arg), e);
}
}
};
($arg:expr, $($msg:expr),+ $(,)? ) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {}: {:?}", ::core::stringify!($arg), ::core::format_args!($($msg,)*), e);
}
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct NoneError;
pub trait Try {
type Ok;
type Error;
fn into_result(self) -> Result<Self::Ok, Self::Error>;
}
impl<T> Try for Option<T> {
type Ok = T;
type Error = NoneError;
#[inline]
fn into_result(self) -> Result<T, NoneError> {
self.ok_or(NoneError)
}
}
impl<T, E> Try for Result<T, E> {
type Ok = T;
type Error = E;
#[inline]
fn into_result(self) -> Self {
self
}
}

View File

@ -0,0 +1,846 @@
//! Interrupt handling for cortex-m devices.
use core::mem;
use core::sync::atomic::{compiler_fence, Ordering};
use cortex_m::interrupt::InterruptNumber;
use cortex_m::peripheral::NVIC;
/// Generate a standard `mod interrupt` for a HAL.
#[macro_export]
macro_rules! interrupt_mod {
($($irqs:ident),* $(,)?) => {
#[cfg(feature = "rt")]
pub use cortex_m_rt::interrupt;
/// Interrupt definitions.
pub mod interrupt {
pub use $crate::interrupt::{InterruptExt, Priority};
pub use crate::pac::Interrupt::*;
pub use crate::pac::Interrupt;
/// Type-level interrupt infrastructure.
///
/// This module contains one *type* per interrupt. This is used for checking at compile time that
/// the interrupts are correctly bound to HAL drivers.
///
/// As an end user, you shouldn't need to use this module directly. Use the [`crate::bind_interrupts!`] macro
/// to bind interrupts, and the [`crate::interrupt`] module to manually register interrupt handlers and manipulate
/// interrupts directly (pending/unpending, enabling/disabling, setting the priority, etc...)
pub mod typelevel {
use super::InterruptExt;
mod sealed {
pub trait Interrupt {}
}
/// Type-level interrupt.
///
/// This trait is implemented for all typelevel interrupt types in this module.
pub trait Interrupt: sealed::Interrupt {
/// Interrupt enum variant.
///
/// This allows going from typelevel interrupts (one type per interrupt) to
/// non-typelevel interrupts (a single `Interrupt` enum type, with one variant per interrupt).
const IRQ: super::Interrupt;
/// Enable the interrupt.
#[inline]
unsafe fn enable() {
Self::IRQ.enable()
}
/// Disable the interrupt.
#[inline]
fn disable() {
Self::IRQ.disable()
}
/// Check if interrupt is enabled.
#[inline]
fn is_enabled() -> bool {
Self::IRQ.is_enabled()
}
/// Check if interrupt is pending.
#[inline]
fn is_pending() -> bool {
Self::IRQ.is_pending()
}
/// Set interrupt pending.
#[inline]
fn pend() {
Self::IRQ.pend()
}
/// Unset interrupt pending.
#[inline]
fn unpend() {
Self::IRQ.unpend()
}
/// Get the priority of the interrupt.
#[inline]
fn get_priority() -> crate::interrupt::Priority {
Self::IRQ.get_priority()
}
/// Set the interrupt priority.
#[inline]
fn set_priority(prio: crate::interrupt::Priority) {
Self::IRQ.set_priority(prio)
}
}
$(
#[allow(non_camel_case_types)]
#[doc=stringify!($irqs)]
#[doc=" typelevel interrupt."]
pub enum $irqs {}
impl sealed::Interrupt for $irqs{}
impl Interrupt for $irqs {
const IRQ: super::Interrupt = super::Interrupt::$irqs;
}
)*
/// Interrupt handler trait.
///
/// Drivers that need to handle interrupts implement this trait.
/// The user must ensure `on_interrupt()` is called every time the interrupt fires.
/// Drivers must use use [`Binding`] to assert at compile time that the user has done so.
pub trait Handler<I: Interrupt> {
/// Interrupt handler function.
///
/// Must be called every time the `I` interrupt fires, synchronously from
/// the interrupt handler context.
///
/// # Safety
///
/// This function must ONLY be called from the interrupt handler for `I`.
unsafe fn on_interrupt();
}
/// Compile-time assertion that an interrupt has been bound to a handler.
///
/// For the vast majority of cases, you should use the `bind_interrupts!`
/// macro instead of writing `unsafe impl`s of this trait.
///
/// # Safety
///
/// By implementing this trait, you are asserting that you have arranged for `H::on_interrupt()`
/// to be called every time the `I` interrupt fires.
///
/// This allows drivers to check bindings at compile-time.
pub unsafe trait Binding<I: Interrupt, H: Handler<I>> {}
}
}
};
}
/// Represents an interrupt type that can be configured by embassy to handle
/// interrupts.
pub unsafe trait InterruptExt: InterruptNumber + Copy {
/// Enable the interrupt.
#[inline]
unsafe fn enable(self) {
compiler_fence(Ordering::SeqCst);
NVIC::unmask(self)
}
/// Disable the interrupt.
#[inline]
fn disable(self) {
NVIC::mask(self);
compiler_fence(Ordering::SeqCst);
}
/// Check if interrupt is being handled.
#[inline]
#[cfg(not(armv6m))]
fn is_active(self) -> bool {
NVIC::is_active(self)
}
/// Check if interrupt is enabled.
#[inline]
fn is_enabled(self) -> bool {
NVIC::is_enabled(self)
}
/// Check if interrupt is pending.
#[inline]
fn is_pending(self) -> bool {
NVIC::is_pending(self)
}
/// Set interrupt pending.
#[inline]
fn pend(self) {
NVIC::pend(self)
}
/// Unset interrupt pending.
#[inline]
fn unpend(self) {
NVIC::unpend(self)
}
/// Get the priority of the interrupt.
#[inline]
fn get_priority(self) -> Priority {
Priority::from(NVIC::get_priority(self))
}
/// Set the interrupt priority.
#[inline]
fn set_priority(self, prio: Priority) {
critical_section::with(|_| unsafe {
let mut nvic: cortex_m::peripheral::NVIC = mem::transmute(());
nvic.set_priority(self, prio.into())
})
}
}
unsafe impl<T: InterruptNumber + Copy> InterruptExt for T {}
impl From<u8> for Priority {
fn from(priority: u8) -> Self {
unsafe { mem::transmute(priority & PRIO_MASK) }
}
}
impl From<Priority> for u8 {
fn from(p: Priority) -> Self {
p as u8
}
}
#[cfg(feature = "prio-bits-0")]
const PRIO_MASK: u8 = 0x00;
#[cfg(feature = "prio-bits-1")]
const PRIO_MASK: u8 = 0x80;
#[cfg(feature = "prio-bits-2")]
const PRIO_MASK: u8 = 0xc0;
#[cfg(feature = "prio-bits-3")]
const PRIO_MASK: u8 = 0xe0;
#[cfg(feature = "prio-bits-4")]
const PRIO_MASK: u8 = 0xf0;
#[cfg(feature = "prio-bits-5")]
const PRIO_MASK: u8 = 0xf8;
#[cfg(feature = "prio-bits-6")]
const PRIO_MASK: u8 = 0xfc;
#[cfg(feature = "prio-bits-7")]
const PRIO_MASK: u8 = 0xfe;
#[cfg(feature = "prio-bits-8")]
const PRIO_MASK: u8 = 0xff;
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-0")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-1")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x80,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-2")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x40,
P2 = 0x80,
P3 = 0xc0,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-3")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x20,
P2 = 0x40,
P3 = 0x60,
P4 = 0x80,
P5 = 0xa0,
P6 = 0xc0,
P7 = 0xe0,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-4")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x10,
P2 = 0x20,
P3 = 0x30,
P4 = 0x40,
P5 = 0x50,
P6 = 0x60,
P7 = 0x70,
P8 = 0x80,
P9 = 0x90,
P10 = 0xa0,
P11 = 0xb0,
P12 = 0xc0,
P13 = 0xd0,
P14 = 0xe0,
P15 = 0xf0,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-5")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x8,
P2 = 0x10,
P3 = 0x18,
P4 = 0x20,
P5 = 0x28,
P6 = 0x30,
P7 = 0x38,
P8 = 0x40,
P9 = 0x48,
P10 = 0x50,
P11 = 0x58,
P12 = 0x60,
P13 = 0x68,
P14 = 0x70,
P15 = 0x78,
P16 = 0x80,
P17 = 0x88,
P18 = 0x90,
P19 = 0x98,
P20 = 0xa0,
P21 = 0xa8,
P22 = 0xb0,
P23 = 0xb8,
P24 = 0xc0,
P25 = 0xc8,
P26 = 0xd0,
P27 = 0xd8,
P28 = 0xe0,
P29 = 0xe8,
P30 = 0xf0,
P31 = 0xf8,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-6")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x4,
P2 = 0x8,
P3 = 0xc,
P4 = 0x10,
P5 = 0x14,
P6 = 0x18,
P7 = 0x1c,
P8 = 0x20,
P9 = 0x24,
P10 = 0x28,
P11 = 0x2c,
P12 = 0x30,
P13 = 0x34,
P14 = 0x38,
P15 = 0x3c,
P16 = 0x40,
P17 = 0x44,
P18 = 0x48,
P19 = 0x4c,
P20 = 0x50,
P21 = 0x54,
P22 = 0x58,
P23 = 0x5c,
P24 = 0x60,
P25 = 0x64,
P26 = 0x68,
P27 = 0x6c,
P28 = 0x70,
P29 = 0x74,
P30 = 0x78,
P31 = 0x7c,
P32 = 0x80,
P33 = 0x84,
P34 = 0x88,
P35 = 0x8c,
P36 = 0x90,
P37 = 0x94,
P38 = 0x98,
P39 = 0x9c,
P40 = 0xa0,
P41 = 0xa4,
P42 = 0xa8,
P43 = 0xac,
P44 = 0xb0,
P45 = 0xb4,
P46 = 0xb8,
P47 = 0xbc,
P48 = 0xc0,
P49 = 0xc4,
P50 = 0xc8,
P51 = 0xcc,
P52 = 0xd0,
P53 = 0xd4,
P54 = 0xd8,
P55 = 0xdc,
P56 = 0xe0,
P57 = 0xe4,
P58 = 0xe8,
P59 = 0xec,
P60 = 0xf0,
P61 = 0xf4,
P62 = 0xf8,
P63 = 0xfc,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-7")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x2,
P2 = 0x4,
P3 = 0x6,
P4 = 0x8,
P5 = 0xa,
P6 = 0xc,
P7 = 0xe,
P8 = 0x10,
P9 = 0x12,
P10 = 0x14,
P11 = 0x16,
P12 = 0x18,
P13 = 0x1a,
P14 = 0x1c,
P15 = 0x1e,
P16 = 0x20,
P17 = 0x22,
P18 = 0x24,
P19 = 0x26,
P20 = 0x28,
P21 = 0x2a,
P22 = 0x2c,
P23 = 0x2e,
P24 = 0x30,
P25 = 0x32,
P26 = 0x34,
P27 = 0x36,
P28 = 0x38,
P29 = 0x3a,
P30 = 0x3c,
P31 = 0x3e,
P32 = 0x40,
P33 = 0x42,
P34 = 0x44,
P35 = 0x46,
P36 = 0x48,
P37 = 0x4a,
P38 = 0x4c,
P39 = 0x4e,
P40 = 0x50,
P41 = 0x52,
P42 = 0x54,
P43 = 0x56,
P44 = 0x58,
P45 = 0x5a,
P46 = 0x5c,
P47 = 0x5e,
P48 = 0x60,
P49 = 0x62,
P50 = 0x64,
P51 = 0x66,
P52 = 0x68,
P53 = 0x6a,
P54 = 0x6c,
P55 = 0x6e,
P56 = 0x70,
P57 = 0x72,
P58 = 0x74,
P59 = 0x76,
P60 = 0x78,
P61 = 0x7a,
P62 = 0x7c,
P63 = 0x7e,
P64 = 0x80,
P65 = 0x82,
P66 = 0x84,
P67 = 0x86,
P68 = 0x88,
P69 = 0x8a,
P70 = 0x8c,
P71 = 0x8e,
P72 = 0x90,
P73 = 0x92,
P74 = 0x94,
P75 = 0x96,
P76 = 0x98,
P77 = 0x9a,
P78 = 0x9c,
P79 = 0x9e,
P80 = 0xa0,
P81 = 0xa2,
P82 = 0xa4,
P83 = 0xa6,
P84 = 0xa8,
P85 = 0xaa,
P86 = 0xac,
P87 = 0xae,
P88 = 0xb0,
P89 = 0xb2,
P90 = 0xb4,
P91 = 0xb6,
P92 = 0xb8,
P93 = 0xba,
P94 = 0xbc,
P95 = 0xbe,
P96 = 0xc0,
P97 = 0xc2,
P98 = 0xc4,
P99 = 0xc6,
P100 = 0xc8,
P101 = 0xca,
P102 = 0xcc,
P103 = 0xce,
P104 = 0xd0,
P105 = 0xd2,
P106 = 0xd4,
P107 = 0xd6,
P108 = 0xd8,
P109 = 0xda,
P110 = 0xdc,
P111 = 0xde,
P112 = 0xe0,
P113 = 0xe2,
P114 = 0xe4,
P115 = 0xe6,
P116 = 0xe8,
P117 = 0xea,
P118 = 0xec,
P119 = 0xee,
P120 = 0xf0,
P121 = 0xf2,
P122 = 0xf4,
P123 = 0xf6,
P124 = 0xf8,
P125 = 0xfa,
P126 = 0xfc,
P127 = 0xfe,
}
/// The interrupt priority level.
///
/// NOTE: The contents of this enum differ according to the set `prio-bits-*` Cargo feature.
#[cfg(feature = "prio-bits-8")]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Priority {
P0 = 0x0,
P1 = 0x1,
P2 = 0x2,
P3 = 0x3,
P4 = 0x4,
P5 = 0x5,
P6 = 0x6,
P7 = 0x7,
P8 = 0x8,
P9 = 0x9,
P10 = 0xa,
P11 = 0xb,
P12 = 0xc,
P13 = 0xd,
P14 = 0xe,
P15 = 0xf,
P16 = 0x10,
P17 = 0x11,
P18 = 0x12,
P19 = 0x13,
P20 = 0x14,
P21 = 0x15,
P22 = 0x16,
P23 = 0x17,
P24 = 0x18,
P25 = 0x19,
P26 = 0x1a,
P27 = 0x1b,
P28 = 0x1c,
P29 = 0x1d,
P30 = 0x1e,
P31 = 0x1f,
P32 = 0x20,
P33 = 0x21,
P34 = 0x22,
P35 = 0x23,
P36 = 0x24,
P37 = 0x25,
P38 = 0x26,
P39 = 0x27,
P40 = 0x28,
P41 = 0x29,
P42 = 0x2a,
P43 = 0x2b,
P44 = 0x2c,
P45 = 0x2d,
P46 = 0x2e,
P47 = 0x2f,
P48 = 0x30,
P49 = 0x31,
P50 = 0x32,
P51 = 0x33,
P52 = 0x34,
P53 = 0x35,
P54 = 0x36,
P55 = 0x37,
P56 = 0x38,
P57 = 0x39,
P58 = 0x3a,
P59 = 0x3b,
P60 = 0x3c,
P61 = 0x3d,
P62 = 0x3e,
P63 = 0x3f,
P64 = 0x40,
P65 = 0x41,
P66 = 0x42,
P67 = 0x43,
P68 = 0x44,
P69 = 0x45,
P70 = 0x46,
P71 = 0x47,
P72 = 0x48,
P73 = 0x49,
P74 = 0x4a,
P75 = 0x4b,
P76 = 0x4c,
P77 = 0x4d,
P78 = 0x4e,
P79 = 0x4f,
P80 = 0x50,
P81 = 0x51,
P82 = 0x52,
P83 = 0x53,
P84 = 0x54,
P85 = 0x55,
P86 = 0x56,
P87 = 0x57,
P88 = 0x58,
P89 = 0x59,
P90 = 0x5a,
P91 = 0x5b,
P92 = 0x5c,
P93 = 0x5d,
P94 = 0x5e,
P95 = 0x5f,
P96 = 0x60,
P97 = 0x61,
P98 = 0x62,
P99 = 0x63,
P100 = 0x64,
P101 = 0x65,
P102 = 0x66,
P103 = 0x67,
P104 = 0x68,
P105 = 0x69,
P106 = 0x6a,
P107 = 0x6b,
P108 = 0x6c,
P109 = 0x6d,
P110 = 0x6e,
P111 = 0x6f,
P112 = 0x70,
P113 = 0x71,
P114 = 0x72,
P115 = 0x73,
P116 = 0x74,
P117 = 0x75,
P118 = 0x76,
P119 = 0x77,
P120 = 0x78,
P121 = 0x79,
P122 = 0x7a,
P123 = 0x7b,
P124 = 0x7c,
P125 = 0x7d,
P126 = 0x7e,
P127 = 0x7f,
P128 = 0x80,
P129 = 0x81,
P130 = 0x82,
P131 = 0x83,
P132 = 0x84,
P133 = 0x85,
P134 = 0x86,
P135 = 0x87,
P136 = 0x88,
P137 = 0x89,
P138 = 0x8a,
P139 = 0x8b,
P140 = 0x8c,
P141 = 0x8d,
P142 = 0x8e,
P143 = 0x8f,
P144 = 0x90,
P145 = 0x91,
P146 = 0x92,
P147 = 0x93,
P148 = 0x94,
P149 = 0x95,
P150 = 0x96,
P151 = 0x97,
P152 = 0x98,
P153 = 0x99,
P154 = 0x9a,
P155 = 0x9b,
P156 = 0x9c,
P157 = 0x9d,
P158 = 0x9e,
P159 = 0x9f,
P160 = 0xa0,
P161 = 0xa1,
P162 = 0xa2,
P163 = 0xa3,
P164 = 0xa4,
P165 = 0xa5,
P166 = 0xa6,
P167 = 0xa7,
P168 = 0xa8,
P169 = 0xa9,
P170 = 0xaa,
P171 = 0xab,
P172 = 0xac,
P173 = 0xad,
P174 = 0xae,
P175 = 0xaf,
P176 = 0xb0,
P177 = 0xb1,
P178 = 0xb2,
P179 = 0xb3,
P180 = 0xb4,
P181 = 0xb5,
P182 = 0xb6,
P183 = 0xb7,
P184 = 0xb8,
P185 = 0xb9,
P186 = 0xba,
P187 = 0xbb,
P188 = 0xbc,
P189 = 0xbd,
P190 = 0xbe,
P191 = 0xbf,
P192 = 0xc0,
P193 = 0xc1,
P194 = 0xc2,
P195 = 0xc3,
P196 = 0xc4,
P197 = 0xc5,
P198 = 0xc6,
P199 = 0xc7,
P200 = 0xc8,
P201 = 0xc9,
P202 = 0xca,
P203 = 0xcb,
P204 = 0xcc,
P205 = 0xcd,
P206 = 0xce,
P207 = 0xcf,
P208 = 0xd0,
P209 = 0xd1,
P210 = 0xd2,
P211 = 0xd3,
P212 = 0xd4,
P213 = 0xd5,
P214 = 0xd6,
P215 = 0xd7,
P216 = 0xd8,
P217 = 0xd9,
P218 = 0xda,
P219 = 0xdb,
P220 = 0xdc,
P221 = 0xdd,
P222 = 0xde,
P223 = 0xdf,
P224 = 0xe0,
P225 = 0xe1,
P226 = 0xe2,
P227 = 0xe3,
P228 = 0xe4,
P229 = 0xe5,
P230 = 0xe6,
P231 = 0xe7,
P232 = 0xe8,
P233 = 0xe9,
P234 = 0xea,
P235 = 0xeb,
P236 = 0xec,
P237 = 0xed,
P238 = 0xee,
P239 = 0xef,
P240 = 0xf0,
P241 = 0xf1,
P242 = 0xf2,
P243 = 0xf3,
P244 = 0xf4,
P245 = 0xf5,
P246 = 0xf6,
P247 = 0xf7,
P248 = 0xf8,
P249 = 0xf9,
P250 = 0xfa,
P251 = 0xfb,
P252 = 0xfc,
P253 = 0xfd,
P254 = 0xfe,
P255 = 0xff,
}

View File

@ -0,0 +1,17 @@
#![no_std]
#![allow(clippy::new_without_default)]
#![doc = include_str!("../README.md")]
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
pub mod atomic_ring_buffer;
pub mod drop;
mod macros;
mod peripheral;
pub mod ratio;
pub mod ring_buffer;
pub use peripheral::{Peripheral, PeripheralRef};
#[cfg(feature = "cortex-m")]
pub mod interrupt;

View File

@ -0,0 +1,123 @@
#[macro_export]
macro_rules! peripherals_definition {
($($(#[$cfg:meta])? $name:ident),*$(,)?) => {
/// Types for the peripheral singletons.
pub mod peripherals {
$(
$(#[$cfg])?
#[allow(non_camel_case_types)]
#[doc = concat!(stringify!($name), " peripheral")]
pub struct $name { _private: () }
$(#[$cfg])?
impl $name {
/// Unsafely create an instance of this peripheral out of thin air.
///
/// # Safety
///
/// You must ensure that you're only using one instance of this type at a time.
#[inline]
pub unsafe fn steal() -> Self {
Self{ _private: ()}
}
}
$(#[$cfg])?
$crate::impl_peripheral!($name);
)*
}
};
}
#[macro_export]
macro_rules! peripherals_struct {
($($(#[$cfg:meta])? $name:ident),*$(,)?) => {
/// Struct containing all the peripheral singletons.
///
/// To obtain the peripherals, you must initialize the HAL, by calling [`crate::init`].
#[allow(non_snake_case)]
pub struct Peripherals {
$(
#[doc = concat!(stringify!($name), " peripheral")]
$(#[$cfg])?
pub $name: peripherals::$name,
)*
}
impl Peripherals {
///Returns all the peripherals *once*
#[inline]
pub(crate) fn take() -> Self {
#[no_mangle]
static mut _EMBASSY_DEVICE_PERIPHERALS: bool = false;
critical_section::with(|_| unsafe {
if _EMBASSY_DEVICE_PERIPHERALS {
panic!("init called more than once!")
}
_EMBASSY_DEVICE_PERIPHERALS = true;
Self::steal()
})
}
}
impl Peripherals {
/// Unsafely create an instance of this peripheral out of thin air.
///
/// # Safety
///
/// You must ensure that you're only using one instance of this type at a time.
#[inline]
pub unsafe fn steal() -> Self {
Self {
$(
$(#[$cfg])?
$name: peripherals::$name::steal(),
)*
}
}
}
};
}
#[macro_export]
macro_rules! peripherals {
($($(#[$cfg:meta])? $name:ident),*$(,)?) => {
$crate::peripherals_definition!(
$(
$(#[$cfg])?
$name,
)*
);
$crate::peripherals_struct!(
$(
$(#[$cfg])?
$name,
)*
);
};
}
#[macro_export]
macro_rules! into_ref {
($($name:ident),*) => {
$(
let mut $name = $name.into_ref();
)*
}
}
#[macro_export]
macro_rules! impl_peripheral {
($type:ident) => {
impl $crate::Peripheral for $type {
type P = $type;
#[inline]
unsafe fn clone_unchecked(&self) -> Self::P {
$type { ..*self }
}
}
};
}

View File

@ -0,0 +1,174 @@
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
/// An exclusive reference to a peripheral.
///
/// This is functionally the same as a `&'a mut T`. There's a few advantages in having
/// a dedicated struct instead:
///
/// - Memory efficiency: Peripheral singletons are typically either zero-sized (for concrete
/// peripherals like `PA9` or `SPI4`) or very small (for example `AnyPin`, which is 1 byte).
/// However `&mut T` is always 4 bytes for 32-bit targets, even if T is zero-sized.
/// PeripheralRef stores a copy of `T` instead, so it's the same size.
/// - Code size efficiency. If the user uses the same driver with both `SPI4` and `&mut SPI4`,
/// the driver code would be monomorphized two times. With PeripheralRef, the driver is generic
/// over a lifetime only. `SPI4` becomes `PeripheralRef<'static, SPI4>`, and `&mut SPI4` becomes
/// `PeripheralRef<'a, SPI4>`. Lifetimes don't cause monomorphization.
pub struct PeripheralRef<'a, T> {
inner: T,
_lifetime: PhantomData<&'a mut T>,
}
impl<'a, T> PeripheralRef<'a, T> {
#[inline]
pub fn new(inner: T) -> Self {
Self {
inner,
_lifetime: PhantomData,
}
}
/// Unsafely clone (duplicate) a peripheral singleton.
///
/// # Safety
///
/// This returns an owned clone of the peripheral. You must manually ensure
/// only one copy of the peripheral is in use at a time. For example, don't
/// create two SPI drivers on `SPI1`, because they will "fight" each other.
///
/// You should strongly prefer using `reborrow()` instead. It returns a
/// `PeripheralRef` that borrows `self`, which allows the borrow checker
/// to enforce this at compile time.
pub unsafe fn clone_unchecked(&self) -> PeripheralRef<'a, T>
where
T: Peripheral<P = T>,
{
PeripheralRef::new(self.inner.clone_unchecked())
}
/// Reborrow into a "child" PeripheralRef.
///
/// `self` will stay borrowed until the child PeripheralRef is dropped.
pub fn reborrow(&mut self) -> PeripheralRef<'_, T>
where
T: Peripheral<P = T>,
{
// safety: we're returning the clone inside a new PeripheralRef that borrows
// self, so user code can't use both at the same time.
PeripheralRef::new(unsafe { self.inner.clone_unchecked() })
}
/// Map the inner peripheral using `Into`.
///
/// This converts from `PeripheralRef<'a, T>` to `PeripheralRef<'a, U>`, using an
/// `Into` impl to convert from `T` to `U`.
///
/// For example, this can be useful to degrade GPIO pins: converting from PeripheralRef<'a, PB11>` to `PeripheralRef<'a, AnyPin>`.
#[inline]
pub fn map_into<U>(self) -> PeripheralRef<'a, U>
where
T: Into<U>,
{
PeripheralRef {
inner: self.inner.into(),
_lifetime: PhantomData,
}
}
}
impl<'a, T> Deref for PeripheralRef<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<'a, T> DerefMut for PeripheralRef<'a, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
/// Trait for any type that can be used as a peripheral of type `P`.
///
/// This is used in driver constructors, to allow passing either owned peripherals (e.g. `TWISPI0`),
/// or borrowed peripherals (e.g. `&mut TWISPI0`).
///
/// For example, if you have a driver with a constructor like this:
///
/// ```ignore
/// impl<'d, T: Instance> Twim<'d, T> {
/// pub fn new(
/// twim: impl Peripheral<P = T> + 'd,
/// irq: impl Peripheral<P = T::Interrupt> + 'd,
/// sda: impl Peripheral<P = impl GpioPin> + 'd,
/// scl: impl Peripheral<P = impl GpioPin> + 'd,
/// config: Config,
/// ) -> Self { .. }
/// }
/// ```
///
/// You may call it with owned peripherals, which yields an instance that can live forever (`'static`):
///
/// ```ignore
/// let mut twi: Twim<'static, ...> = Twim::new(p.TWISPI0, irq, p.P0_03, p.P0_04, config);
/// ```
///
/// Or you may call it with borrowed peripherals, which yields an instance that can only live for as long
/// as the borrows last:
///
/// ```ignore
/// let mut twi: Twim<'_, ...> = Twim::new(&mut p.TWISPI0, &mut irq, &mut p.P0_03, &mut p.P0_04, config);
/// ```
///
/// # Implementation details, for HAL authors
///
/// When writing a HAL, the intended way to use this trait is to take `impl Peripheral<P = ..>` in
/// the HAL's public API (such as driver constructors), calling `.into_ref()` to obtain a `PeripheralRef`,
/// and storing that in the driver struct.
///
/// `.into_ref()` on an owned `T` yields a `PeripheralRef<'static, T>`.
/// `.into_ref()` on an `&'a mut T` yields a `PeripheralRef<'a, T>`.
pub trait Peripheral: Sized {
/// Peripheral singleton type
type P;
/// Unsafely clone (duplicate) a peripheral singleton.
///
/// # Safety
///
/// This returns an owned clone of the peripheral. You must manually ensure
/// only one copy of the peripheral is in use at a time. For example, don't
/// create two SPI drivers on `SPI1`, because they will "fight" each other.
///
/// You should strongly prefer using `into_ref()` instead. It returns a
/// `PeripheralRef`, which allows the borrow checker to enforce this at compile time.
unsafe fn clone_unchecked(&self) -> Self::P;
/// Convert a value into a `PeripheralRef`.
///
/// When called on an owned `T`, yields a `PeripheralRef<'static, T>`.
/// When called on an `&'a mut T`, yields a `PeripheralRef<'a, T>`.
#[inline]
fn into_ref<'a>(self) -> PeripheralRef<'a, Self::P>
where
Self: 'a,
{
PeripheralRef::new(unsafe { self.clone_unchecked() })
}
}
impl<'b, T: DerefMut> Peripheral for T
where
T::Target: Peripheral,
{
type P = <T::Target as Peripheral>::P;
#[inline]
unsafe fn clone_unchecked(&self) -> Self::P {
self.deref().clone_unchecked()
}
}

View File

@ -0,0 +1,129 @@
use core::ops::{Add, Div, Mul};
use num_traits::{CheckedAdd, CheckedDiv, CheckedMul};
/// Represents the ratio between two numbers.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Ratio<T> {
/// Numerator.
numer: T,
/// Denominator.
denom: T,
}
impl<T> Ratio<T> {
/// Creates a new `Ratio`.
#[inline(always)]
pub const fn new_raw(numer: T, denom: T) -> Ratio<T> {
Ratio { numer, denom }
}
/// Gets an immutable reference to the numerator.
#[inline(always)]
pub const fn numer(&self) -> &T {
&self.numer
}
/// Gets an immutable reference to the denominator.
#[inline(always)]
pub const fn denom(&self) -> &T {
&self.denom
}
}
impl<T: CheckedDiv> Ratio<T> {
/// Converts to an integer, rounding towards zero.
#[inline(always)]
pub fn to_integer(&self) -> T {
unwrap!(self.numer().checked_div(self.denom()))
}
}
impl<T: CheckedMul> Div<T> for Ratio<T> {
type Output = Self;
#[inline(always)]
fn div(mut self, rhs: T) -> Self::Output {
self.denom = unwrap!(self.denom().checked_mul(&rhs));
self
}
}
impl<T: CheckedMul> Mul<T> for Ratio<T> {
type Output = Self;
#[inline(always)]
fn mul(mut self, rhs: T) -> Self::Output {
self.numer = unwrap!(self.numer().checked_mul(&rhs));
self
}
}
impl<T: CheckedMul + CheckedAdd> Add<T> for Ratio<T> {
type Output = Self;
#[inline(always)]
fn add(mut self, rhs: T) -> Self::Output {
self.numer = unwrap!(unwrap!(self.denom().checked_mul(&rhs)).checked_add(self.numer()));
self
}
}
macro_rules! impl_from_for_float {
($from:ident) => {
impl From<Ratio<$from>> for f32 {
#[inline(always)]
fn from(r: Ratio<$from>) -> Self {
(r.numer as f32) / (r.denom as f32)
}
}
impl From<Ratio<$from>> for f64 {
#[inline(always)]
fn from(r: Ratio<$from>) -> Self {
(r.numer as f64) / (r.denom as f64)
}
}
};
}
impl_from_for_float!(u8);
impl_from_for_float!(u16);
impl_from_for_float!(u32);
impl_from_for_float!(u64);
impl_from_for_float!(u128);
impl_from_for_float!(i8);
impl_from_for_float!(i16);
impl_from_for_float!(i32);
impl_from_for_float!(i64);
impl_from_for_float!(i128);
impl<T: core::fmt::Display> core::fmt::Display for Ratio<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
core::write!(f, "{} / {}", self.numer(), self.denom())
}
}
#[cfg(test)]
mod tests {
use super::Ratio;
#[test]
fn basics() {
let mut r = Ratio::new_raw(1, 2) + 2;
assert_eq!(*r.numer(), 5);
assert_eq!(*r.denom(), 2);
assert_eq!(r.to_integer(), 2);
r = r * 2;
assert_eq!(*r.numer(), 10);
assert_eq!(*r.denom(), 2);
assert_eq!(r.to_integer(), 5);
r = r / 2;
assert_eq!(*r.numer(), 10);
assert_eq!(*r.denom(), 4);
assert_eq!(r.to_integer(), 2);
}
}

View File

@ -0,0 +1,136 @@
pub struct RingBuffer<'a> {
buf: &'a mut [u8],
start: usize,
end: usize,
empty: bool,
}
impl<'a> RingBuffer<'a> {
pub fn new(buf: &'a mut [u8]) -> Self {
Self {
buf,
start: 0,
end: 0,
empty: true,
}
}
pub fn push_buf(&mut self) -> &mut [u8] {
if self.start == self.end && !self.empty {
trace!(" ringbuf: push_buf empty");
return &mut self.buf[..0];
}
let n = if self.start <= self.end {
self.buf.len() - self.end
} else {
self.start - self.end
};
trace!(" ringbuf: push_buf {:?}..{:?}", self.end, self.end + n);
&mut self.buf[self.end..self.end + n]
}
pub fn push(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
if n == 0 {
return;
}
self.end = self.wrap(self.end + n);
self.empty = false;
}
pub fn pop_buf(&mut self) -> &mut [u8] {
if self.empty {
trace!(" ringbuf: pop_buf empty");
return &mut self.buf[..0];
}
let n = if self.end <= self.start {
self.buf.len() - self.start
} else {
self.end - self.start
};
trace!(" ringbuf: pop_buf {:?}..{:?}", self.start, self.start + n);
&mut self.buf[self.start..self.start + n]
}
pub fn pop(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
if n == 0 {
return;
}
self.start = self.wrap(self.start + n);
self.empty = self.start == self.end;
}
pub fn is_full(&self) -> bool {
self.start == self.end && !self.empty
}
pub fn is_empty(&self) -> bool {
self.empty
}
pub fn clear(&mut self) {
self.start = 0;
self.end = 0;
self.empty = true;
}
fn wrap(&self, n: usize) -> usize {
assert!(n <= self.buf.len());
if n == self.buf.len() {
0
} else {
n
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn push_pop() {
let mut b = [0; 4];
let mut rb = RingBuffer::new(&mut b);
let buf = rb.push_buf();
assert_eq!(4, buf.len());
buf[0] = 1;
buf[1] = 2;
buf[2] = 3;
buf[3] = 4;
rb.push(4);
let buf = rb.pop_buf();
assert_eq!(4, buf.len());
assert_eq!(1, buf[0]);
rb.pop(1);
let buf = rb.pop_buf();
assert_eq!(3, buf.len());
assert_eq!(2, buf[0]);
rb.pop(1);
let buf = rb.pop_buf();
assert_eq!(2, buf.len());
assert_eq!(3, buf[0]);
rb.pop(1);
let buf = rb.pop_buf();
assert_eq!(1, buf.len());
assert_eq!(4, buf[0]);
rb.pop(1);
let buf = rb.pop_buf();
assert_eq!(0, buf.len());
let buf = rb.push_buf();
assert_eq!(4, buf.len());
}
}