wip: experimental async usb stack

This commit is contained in:
Dario Nieuwenhuis
2022-03-09 01:34:35 +01:00
parent c1b3822964
commit 37598a5b37
15 changed files with 2624 additions and 186 deletions

12
embassy-usb/Cargo.toml Normal file
View File

@ -0,0 +1,12 @@
[package]
name = "embassy-usb"
version = "0.1.0"
edition = "2018"
[dependencies]
embassy = { version = "0.1.0", path = "../embassy" }
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
cortex-m = "0.7.3"
num-traits = { version = "0.2.14", default-features = false }

347
embassy-usb/src/builder.rs Normal file
View File

@ -0,0 +1,347 @@
use super::descriptor::{BosWriter, DescriptorWriter};
use super::driver::{Driver, EndpointAllocError};
use super::types::*;
use super::UsbDevice;
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct Config<'a> {
pub(crate) vendor_id: u16,
pub(crate) product_id: u16,
/// Device class code assigned by USB.org. Set to `0xff` for vendor-specific
/// devices that do not conform to any class.
///
/// Default: `0x00` (class code specified by interfaces)
pub device_class: u8,
/// Device sub-class code. Depends on class.
///
/// Default: `0x00`
pub device_sub_class: u8,
/// Device protocol code. Depends on class and sub-class.
///
/// Default: `0x00`
pub device_protocol: u8,
/// Device release version in BCD.
///
/// Default: `0x0010` ("0.1")
pub device_release: u16,
/// Maximum packet size in bytes for the control endpoint 0.
///
/// Valid values are 8, 16, 32 and 64. There's generally no need to change this from the default
/// value of 8 bytes unless a class uses control transfers for sending large amounts of data, in
/// which case using a larger packet size may be more efficient.
///
/// Default: 8 bytes
pub max_packet_size_0: u8,
/// Manufacturer name string descriptor.
///
/// Default: (none)
pub manufacturer: Option<&'a str>,
/// Product name string descriptor.
///
/// Default: (none)
pub product: Option<&'a str>,
/// Serial number string descriptor.
///
/// Default: (none)
pub serial_number: Option<&'a str>,
/// Whether the device supports remotely waking up the host is requested.
///
/// Default: `false`
pub supports_remote_wakeup: bool,
/// Configures the device as a composite device with interface association descriptors.
///
/// If set to `true`, the following fields should have the given values:
///
/// - `device_class` = `0xEF`
/// - `device_sub_class` = `0x02`
/// - `device_protocol` = `0x01`
pub composite_with_iads: bool,
/// Whether the device has its own power source.
///
/// This should be set to `true` even if the device is sometimes self-powered and may not
/// always draw power from the USB bus.
///
/// Default: `false`
///
/// See also: `max_power`
pub self_powered: bool,
/// Maximum current drawn from the USB bus by the device, in milliamps.
///
/// The default is 100 mA. If your device always uses an external power source and never draws
/// power from the USB bus, this can be set to 0.
///
/// See also: `self_powered`
///
/// Default: 100mA
/// Max: 500mA
pub max_power: u16,
}
impl<'a> Config<'a> {
pub fn new(vid: u16, pid: u16) -> Self {
Self {
device_class: 0x00,
device_sub_class: 0x00,
device_protocol: 0x00,
max_packet_size_0: 8,
vendor_id: vid,
product_id: pid,
device_release: 0x0010,
manufacturer: None,
product: None,
serial_number: None,
self_powered: false,
supports_remote_wakeup: false,
composite_with_iads: false,
max_power: 100,
}
}
}
/// Used to build new [`UsbDevice`]s.
pub struct UsbDeviceBuilder<'d, D: Driver<'d>> {
config: Config<'d>,
bus: D,
next_interface_number: u8,
next_string_index: u8,
// TODO make not pub?
pub device_descriptor: DescriptorWriter<'d>,
pub config_descriptor: DescriptorWriter<'d>,
pub bos_descriptor: BosWriter<'d>,
}
impl<'d, D: Driver<'d>> UsbDeviceBuilder<'d, D> {
/// Creates a builder for constructing a new [`UsbDevice`].
pub fn new(
bus: D,
config: Config<'d>,
device_descriptor_buf: &'d mut [u8],
config_descriptor_buf: &'d mut [u8],
bos_descriptor_buf: &'d mut [u8],
) -> Self {
// Magic values specified in USB-IF ECN on IADs.
if config.composite_with_iads
&& (config.device_class != 0xEF
|| config.device_sub_class != 0x02
|| config.device_protocol != 0x01)
{
panic!("if composite_with_iads is set, you must set device_class = 0xEF, device_sub_class = 0x02, device_protocol = 0x01");
}
if config.max_power > 500 {
panic!("The maximum allowed value for `max_power` is 500mA");
}
match config.max_packet_size_0 {
8 | 16 | 32 | 64 => {}
_ => panic!("invalid max_packet_size_0, the allowed values are 8, 16, 32 or 64"),
}
let mut device_descriptor = DescriptorWriter::new(device_descriptor_buf);
let mut config_descriptor = DescriptorWriter::new(config_descriptor_buf);
let mut bos_descriptor = BosWriter::new(DescriptorWriter::new(bos_descriptor_buf));
device_descriptor.device(&config).unwrap();
config_descriptor.configuration(&config).unwrap();
bos_descriptor.bos().unwrap();
UsbDeviceBuilder {
bus,
config,
next_interface_number: 0,
next_string_index: 4,
device_descriptor,
config_descriptor,
bos_descriptor,
}
}
/// Creates the [`UsbDevice`] instance with the configuration in this builder.
pub fn build(mut self) -> UsbDevice<'d, D> {
self.config_descriptor.end_configuration();
self.bos_descriptor.end_bos();
UsbDevice::build(
self.bus,
self.config,
self.device_descriptor.into_buf(),
self.config_descriptor.into_buf(),
self.bos_descriptor.writer.into_buf(),
)
}
/// Allocates a new interface number.
pub fn alloc_interface(&mut self) -> InterfaceNumber {
let number = self.next_interface_number;
self.next_interface_number += 1;
InterfaceNumber::new(number)
}
/// Allocates a new string index.
pub fn alloc_string(&mut self) -> StringIndex {
let index = self.next_string_index;
self.next_string_index += 1;
StringIndex::new(index)
}
/// Allocates an in endpoint.
///
/// This directly delegates to [`Driver::alloc_endpoint_in`], so see that method for details. In most
/// cases classes should call the endpoint type specific methods instead.
pub fn alloc_endpoint_in(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<D::EndpointIn, EndpointAllocError> {
self.bus
.alloc_endpoint_in(ep_addr, ep_type, max_packet_size, interval)
}
/// Allocates an out endpoint.
///
/// This directly delegates to [`Driver::alloc_endpoint_out`], so see that method for details. In most
/// cases classes should call the endpoint type specific methods instead.
pub fn alloc_endpoint_out(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<D::EndpointOut, EndpointAllocError> {
self.bus
.alloc_endpoint_out(ep_addr, ep_type, max_packet_size, interval)
}
/// Allocates a control in endpoint.
///
/// This crate implements the control state machine only for endpoint 0. If classes want to
/// support control requests in other endpoints, the state machine must be implemented manually.
/// This should rarely be needed by classes.
///
/// # Arguments
///
/// * `max_packet_size` - Maximum packet size in bytes. Must be one of 8, 16, 32 or 64.
///
/// # Panics
///
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_control_endpoint_in(&mut self, max_packet_size: u16) -> D::EndpointIn {
self.alloc_endpoint_in(None, EndpointType::Control, max_packet_size, 0)
.expect("alloc_ep failed")
}
/// Allocates a control out endpoint.
///
/// This crate implements the control state machine only for endpoint 0. If classes want to
/// support control requests in other endpoints, the state machine must be implemented manually.
/// This should rarely be needed by classes.
///
/// # Arguments
///
/// * `max_packet_size` - Maximum packet size in bytes. Must be one of 8, 16, 32 or 64.
///
/// # Panics
///
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_control_endpoint_out(&mut self, max_packet_size: u16) -> D::EndpointOut {
self.alloc_endpoint_out(None, EndpointType::Control, max_packet_size, 0)
.expect("alloc_ep failed")
}
/// Allocates a bulk in endpoint.
///
/// # Arguments
///
/// * `max_packet_size` - Maximum packet size in bytes. Must be one of 8, 16, 32 or 64.
///
/// # Panics
///
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_bulk_endpoint_in(&mut self, max_packet_size: u16) -> D::EndpointIn {
self.alloc_endpoint_in(None, EndpointType::Bulk, max_packet_size, 0)
.expect("alloc_ep failed")
}
/// Allocates a bulk out endpoint.
///
/// # Arguments
///
/// * `max_packet_size` - Maximum packet size in bytes. Must be one of 8, 16, 32 or 64.
///
/// # Panics
///
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_bulk_endpoint_out(&mut self, max_packet_size: u16) -> D::EndpointOut {
self.alloc_endpoint_out(None, EndpointType::Bulk, max_packet_size, 0)
.expect("alloc_ep failed")
}
/// Allocates a bulk in endpoint.
///
/// # Arguments
///
/// * `max_packet_size` - Maximum packet size in bytes. Cannot exceed 64 bytes.
///
/// # Panics
///
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_interrupt_endpoint_in(
&mut self,
max_packet_size: u16,
interval: u8,
) -> D::EndpointIn {
self.alloc_endpoint_in(None, EndpointType::Interrupt, max_packet_size, interval)
.expect("alloc_ep failed")
}
/// Allocates a bulk in endpoint.
///
/// # Arguments
///
/// * `max_packet_size` - Maximum packet size in bytes. Cannot exceed 64 bytes.
///
/// # Panics
///
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_interrupt_endpoint_out(
&mut self,
max_packet_size: u16,
interval: u8,
) -> D::EndpointOut {
self.alloc_endpoint_out(None, EndpointType::Interrupt, max_packet_size, interval)
.expect("alloc_ep failed")
}
}

134
embassy-usb/src/control.rs Normal file
View File

@ -0,0 +1,134 @@
use core::mem;
use super::types::*;
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ParseError {
InvalidLength,
}
/// Control request type.
#[repr(u8)]
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RequestType {
/// Request is a USB standard request. Usually handled by
/// [`UsbDevice`](crate::device::UsbDevice).
Standard = 0,
/// Request is intended for a USB class.
Class = 1,
/// Request is vendor-specific.
Vendor = 2,
/// Reserved.
Reserved = 3,
}
/// Control request recipient.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Recipient {
/// Request is intended for the entire device.
Device = 0,
/// Request is intended for an interface. Generally, the `index` field of the request specifies
/// the interface number.
Interface = 1,
/// Request is intended for an endpoint. Generally, the `index` field of the request specifies
/// the endpoint address.
Endpoint = 2,
/// None of the above.
Other = 3,
/// Reserved.
Reserved = 4,
}
/// A control request read from a SETUP packet.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Request {
/// Direction of the request.
pub direction: UsbDirection,
/// Type of the request.
pub request_type: RequestType,
/// Recipient of the request.
pub recipient: Recipient,
/// Request code. The meaning of the value depends on the previous fields.
pub request: u8,
/// Request value. The meaning of the value depends on the previous fields.
pub value: u16,
/// Request index. The meaning of the value depends on the previous fields.
pub index: u16,
/// Length of the DATA stage. For control OUT transfers this is the exact length of the data the
/// host sent. For control IN transfers this is the maximum length of data the device should
/// return.
pub length: u16,
}
impl Request {
/// Standard USB control request Get Status
pub const GET_STATUS: u8 = 0;
/// Standard USB control request Clear Feature
pub const CLEAR_FEATURE: u8 = 1;
/// Standard USB control request Set Feature
pub const SET_FEATURE: u8 = 3;
/// Standard USB control request Set Address
pub const SET_ADDRESS: u8 = 5;
/// Standard USB control request Get Descriptor
pub const GET_DESCRIPTOR: u8 = 6;
/// Standard USB control request Set Descriptor
pub const SET_DESCRIPTOR: u8 = 7;
/// Standard USB control request Get Configuration
pub const GET_CONFIGURATION: u8 = 8;
/// Standard USB control request Set Configuration
pub const SET_CONFIGURATION: u8 = 9;
/// Standard USB control request Get Interface
pub const GET_INTERFACE: u8 = 10;
/// Standard USB control request Set Interface
pub const SET_INTERFACE: u8 = 11;
/// Standard USB control request Synch Frame
pub const SYNCH_FRAME: u8 = 12;
/// Standard USB feature Endpoint Halt for Set/Clear Feature
pub const FEATURE_ENDPOINT_HALT: u16 = 0;
/// Standard USB feature Device Remote Wakeup for Set/Clear Feature
pub const FEATURE_DEVICE_REMOTE_WAKEUP: u16 = 1;
pub(crate) fn parse(buf: &[u8]) -> Result<Request, ParseError> {
if buf.len() != 8 {
return Err(ParseError::InvalidLength);
}
let rt = buf[0];
let recipient = rt & 0b11111;
Ok(Request {
direction: rt.into(),
request_type: unsafe { mem::transmute((rt >> 5) & 0b11) },
recipient: if recipient <= 3 {
unsafe { mem::transmute(recipient) }
} else {
Recipient::Reserved
},
request: buf[1],
value: (buf[2] as u16) | ((buf[3] as u16) << 8),
index: (buf[4] as u16) | ((buf[5] as u16) << 8),
length: (buf[6] as u16) | ((buf[7] as u16) << 8),
})
}
/// Gets the descriptor type and index from the value field of a GET_DESCRIPTOR request.
pub fn descriptor_type_index(&self) -> (u8, u8) {
((self.value >> 8) as u8, self.value as u8)
}
}

View File

@ -0,0 +1,387 @@
use super::builder::Config;
use super::{types::*, CONFIGURATION_VALUE, DEFAULT_ALTERNATE_SETTING};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
BufferFull,
InvalidState,
}
/// Standard descriptor types
#[allow(missing_docs)]
pub mod descriptor_type {
pub const DEVICE: u8 = 1;
pub const CONFIGURATION: u8 = 2;
pub const STRING: u8 = 3;
pub const INTERFACE: u8 = 4;
pub const ENDPOINT: u8 = 5;
pub const IAD: u8 = 11;
pub const BOS: u8 = 15;
pub const CAPABILITY: u8 = 16;
}
/// String descriptor language IDs.
pub mod lang_id {
/// English (US)
///
/// Recommended for use as the first language ID for compatibility.
pub const ENGLISH_US: u16 = 0x0409;
}
/// Standard capability descriptor types
#[allow(missing_docs)]
pub mod capability_type {
pub const WIRELESS_USB: u8 = 1;
pub const USB_2_0_EXTENSION: u8 = 2;
pub const SS_USB_DEVICE: u8 = 3;
pub const CONTAINER_ID: u8 = 4;
pub const PLATFORM: u8 = 5;
}
/// A writer for USB descriptors.
pub struct DescriptorWriter<'a> {
buf: &'a mut [u8],
position: usize,
num_interfaces_mark: Option<usize>,
num_endpoints_mark: Option<usize>,
write_iads: bool,
}
impl<'a> DescriptorWriter<'a> {
pub(crate) fn new(buf: &'a mut [u8]) -> Self {
DescriptorWriter {
buf,
position: 0,
num_interfaces_mark: None,
num_endpoints_mark: None,
write_iads: false,
}
}
pub fn into_buf(self) -> &'a mut [u8] {
&mut self.buf[..self.position]
}
/// Gets the current position in the buffer, i.e. the number of bytes written so far.
pub fn position(&self) -> usize {
self.position
}
/// Writes an arbitrary (usually class-specific) descriptor.
pub fn write(&mut self, descriptor_type: u8, descriptor: &[u8]) -> Result<(), Error> {
let length = descriptor.len();
if (self.position + 2 + length) > self.buf.len() || (length + 2) > 255 {
return Err(Error::BufferFull);
}
self.buf[self.position] = (length + 2) as u8;
self.buf[self.position + 1] = descriptor_type;
let start = self.position + 2;
self.buf[start..start + length].copy_from_slice(descriptor);
self.position = start + length;
Ok(())
}
pub(crate) fn device(&mut self, config: &Config) -> Result<(), Error> {
self.write(
descriptor_type::DEVICE,
&[
0x10,
0x02, // bcdUSB 2.1
config.device_class, // bDeviceClass
config.device_sub_class, // bDeviceSubClass
config.device_protocol, // bDeviceProtocol
config.max_packet_size_0, // bMaxPacketSize0
config.vendor_id as u8,
(config.vendor_id >> 8) as u8, // idVendor
config.product_id as u8,
(config.product_id >> 8) as u8, // idProduct
config.device_release as u8,
(config.device_release >> 8) as u8, // bcdDevice
config.manufacturer.map_or(0, |_| 1), // iManufacturer
config.product.map_or(0, |_| 2), // iProduct
config.serial_number.map_or(0, |_| 3), // iSerialNumber
1, // bNumConfigurations
],
)
}
pub(crate) fn configuration(&mut self, config: &Config) -> Result<(), Error> {
self.num_interfaces_mark = Some(self.position + 4);
self.write_iads = config.composite_with_iads;
self.write(
descriptor_type::CONFIGURATION,
&[
0,
0, // wTotalLength
0, // bNumInterfaces
CONFIGURATION_VALUE, // bConfigurationValue
0, // iConfiguration
0x80 | if config.self_powered { 0x40 } else { 0x00 }
| if config.supports_remote_wakeup {
0x20
} else {
0x00
}, // bmAttributes
(config.max_power / 2) as u8, // bMaxPower
],
)
}
pub(crate) fn end_class(&mut self) {
self.num_endpoints_mark = None;
}
pub(crate) fn end_configuration(&mut self) {
let position = self.position as u16;
self.buf[2..4].copy_from_slice(&position.to_le_bytes());
}
/// Writes a interface association descriptor. Call from `UsbClass::get_configuration_descriptors`
/// before writing the USB class or function's interface descriptors if your class has more than
/// one interface and wants to play nicely with composite devices on Windows. If the USB device
/// hosting the class was not configured as composite with IADs enabled, calling this function
/// does nothing, so it is safe to call from libraries.
///
/// # Arguments
///
/// * `first_interface` - Number of the function's first interface, previously allocated with
/// [`UsbDeviceBuilder::interface`](crate::bus::UsbDeviceBuilder::interface).
/// * `interface_count` - Number of interfaces in the function.
/// * `function_class` - Class code assigned by USB.org. Use `0xff` for vendor-specific devices
/// that do not conform to any class.
/// * `function_sub_class` - Sub-class code. Depends on class.
/// * `function_protocol` - Protocol code. Depends on class and sub-class.
pub fn iad(
&mut self,
first_interface: InterfaceNumber,
interface_count: u8,
function_class: u8,
function_sub_class: u8,
function_protocol: u8,
) -> Result<(), Error> {
if !self.write_iads {
return Ok(());
}
self.write(
descriptor_type::IAD,
&[
first_interface.into(), // bFirstInterface
interface_count, // bInterfaceCount
function_class,
function_sub_class,
function_protocol,
0,
],
)?;
Ok(())
}
/// Writes a interface descriptor.
///
/// # Arguments
///
/// * `number` - Interface number previously allocated with
/// [`UsbDeviceBuilder::interface`](crate::bus::UsbDeviceBuilder::interface).
/// * `interface_class` - Class code assigned by USB.org. Use `0xff` for vendor-specific devices
/// that do not conform to any class.
/// * `interface_sub_class` - Sub-class code. Depends on class.
/// * `interface_protocol` - Protocol code. Depends on class and sub-class.
pub fn interface(
&mut self,
number: InterfaceNumber,
interface_class: u8,
interface_sub_class: u8,
interface_protocol: u8,
) -> Result<(), Error> {
self.interface_alt(
number,
DEFAULT_ALTERNATE_SETTING,
interface_class,
interface_sub_class,
interface_protocol,
None,
)
}
/// Writes a interface descriptor with a specific alternate setting and
/// interface string identifier.
///
/// # Arguments
///
/// * `number` - Interface number previously allocated with
/// [`UsbDeviceBuilder::interface`](crate::bus::UsbDeviceBuilder::interface).
/// * `alternate_setting` - Number of the alternate setting
/// * `interface_class` - Class code assigned by USB.org. Use `0xff` for vendor-specific devices
/// that do not conform to any class.
/// * `interface_sub_class` - Sub-class code. Depends on class.
/// * `interface_protocol` - Protocol code. Depends on class and sub-class.
/// * `interface_string` - Index of string descriptor describing this interface
pub fn interface_alt(
&mut self,
number: InterfaceNumber,
alternate_setting: u8,
interface_class: u8,
interface_sub_class: u8,
interface_protocol: u8,
interface_string: Option<StringIndex>,
) -> Result<(), Error> {
if alternate_setting == DEFAULT_ALTERNATE_SETTING {
match self.num_interfaces_mark {
Some(mark) => self.buf[mark] += 1,
None => return Err(Error::InvalidState),
};
}
let str_index = interface_string.map_or(0, Into::into);
self.num_endpoints_mark = Some(self.position + 4);
self.write(
descriptor_type::INTERFACE,
&[
number.into(), // bInterfaceNumber
alternate_setting, // bAlternateSetting
0, // bNumEndpoints
interface_class, // bInterfaceClass
interface_sub_class, // bInterfaceSubClass
interface_protocol, // bInterfaceProtocol
str_index, // iInterface
],
)?;
Ok(())
}
/// Writes an endpoint descriptor.
///
/// # Arguments
///
/// * `endpoint` - Endpoint previously allocated with
/// [`UsbDeviceBuilder`](crate::bus::UsbDeviceBuilder).
pub fn endpoint(&mut self, endpoint: &EndpointInfo) -> Result<(), Error> {
match self.num_endpoints_mark {
Some(mark) => self.buf[mark] += 1,
None => return Err(Error::InvalidState),
};
self.write(
descriptor_type::ENDPOINT,
&[
endpoint.addr.into(), // bEndpointAddress
endpoint.ep_type as u8, // bmAttributes
endpoint.max_packet_size as u8,
(endpoint.max_packet_size >> 8) as u8, // wMaxPacketSize
endpoint.interval, // bInterval
],
)?;
Ok(())
}
/// Writes a string descriptor.
pub(crate) fn string(&mut self, string: &str) -> Result<(), Error> {
let mut pos = self.position;
if pos + 2 > self.buf.len() {
return Err(Error::BufferFull);
}
self.buf[pos] = 0; // length placeholder
self.buf[pos + 1] = descriptor_type::STRING;
pos += 2;
for c in string.encode_utf16() {
if pos >= self.buf.len() {
return Err(Error::BufferFull);
}
self.buf[pos..pos + 2].copy_from_slice(&c.to_le_bytes());
pos += 2;
}
self.buf[self.position] = (pos - self.position) as u8;
self.position = pos;
Ok(())
}
}
/// A writer for Binary Object Store descriptor.
pub struct BosWriter<'a> {
pub(crate) writer: DescriptorWriter<'a>,
num_caps_mark: Option<usize>,
}
impl<'a> BosWriter<'a> {
pub(crate) fn new(writer: DescriptorWriter<'a>) -> Self {
Self {
writer: writer,
num_caps_mark: None,
}
}
pub(crate) fn bos(&mut self) -> Result<(), Error> {
self.num_caps_mark = Some(self.writer.position + 4);
self.writer.write(
descriptor_type::BOS,
&[
0x00, 0x00, // wTotalLength
0x00, // bNumDeviceCaps
],
)?;
self.capability(capability_type::USB_2_0_EXTENSION, &[0; 4])?;
Ok(())
}
/// Writes capability descriptor to a BOS
///
/// # Arguments
///
/// * `capability_type` - Type of a capability
/// * `data` - Binary data of the descriptor
pub fn capability(&mut self, capability_type: u8, data: &[u8]) -> Result<(), Error> {
match self.num_caps_mark {
Some(mark) => self.writer.buf[mark] += 1,
None => return Err(Error::InvalidState),
}
let mut start = self.writer.position;
let blen = data.len();
if (start + blen + 3) > self.writer.buf.len() || (blen + 3) > 255 {
return Err(Error::BufferFull);
}
self.writer.buf[start] = (blen + 3) as u8;
self.writer.buf[start + 1] = descriptor_type::CAPABILITY;
self.writer.buf[start + 2] = capability_type;
start += 3;
self.writer.buf[start..start + blen].copy_from_slice(data);
self.writer.position = start + blen;
Ok(())
}
pub(crate) fn end_bos(&mut self) {
self.num_caps_mark = None;
let position = self.writer.position as u16;
self.writer.buf[2..4].copy_from_slice(&position.to_le_bytes());
}
}

160
embassy-usb/src/driver.rs Normal file
View File

@ -0,0 +1,160 @@
use core::future::Future;
use super::types::*;
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct EndpointAllocError;
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Operation is unsupported by the driver.
pub struct Unsupported;
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Errors returned by [`EndpointIn::write`]
pub enum WriteError {
/// The packet is too long to fit in the
/// transmission buffer. This is generally an error in the class implementation, because the
/// class shouldn't provide more data than the `max_packet_size` it specified when allocating
/// the endpoint.
BufferOverflow,
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Errors returned by [`EndpointOut::read`]
pub enum ReadError {
/// The received packet is too long to
/// fit in `buf`. This is generally an error in the class implementation, because the class
/// should use a buffer that is large enough for the `max_packet_size` it specified when
/// allocating the endpoint.
BufferOverflow,
}
/// Driver for a specific USB peripheral. Implement this to add support for a new hardware
/// platform.
pub trait Driver<'a> {
type EndpointOut: EndpointOut + 'a;
type EndpointIn: EndpointIn + 'a;
type Bus: Bus + 'a;
/// Allocates an endpoint and specified endpoint parameters. This method is called by the device
/// and class implementations to allocate endpoints, and can only be called before
/// [`enable`](UsbBus::enable) is called.
///
/// # Arguments
///
/// * `ep_addr` - A static endpoint address to allocate. If Some, the implementation should
/// attempt to return an endpoint with the specified address. If None, the implementation
/// should return the next available one.
/// * `max_packet_size` - Maximum packet size in bytes.
/// * `interval` - Polling interval parameter for interrupt endpoints.
fn alloc_endpoint_out(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointOut, EndpointAllocError>;
fn alloc_endpoint_in(
&mut self,
ep_addr: Option<EndpointAddress>,
ep_type: EndpointType,
max_packet_size: u16,
interval: u8,
) -> Result<Self::EndpointIn, EndpointAllocError>;
/// Enables and initializes the USB peripheral. Soon after enabling the device will be reset, so
/// there is no need to perform a USB reset in this method.
fn enable(self) -> Self::Bus;
/// Indicates that `set_device_address` must be called before accepting the corresponding
/// control transfer, not after.
///
/// The default value for this constant is `false`, which corresponds to the USB 2.0 spec, 9.4.6
const QUIRK_SET_ADDRESS_BEFORE_STATUS: bool = false;
}
pub trait Bus {
/// Called when the host resets the device. This will be soon called after
/// [`poll`](crate::device::UsbDevice::poll) returns [`PollResult::Reset`]. This method should
/// reset the state of all endpoints and peripheral flags back to a state suitable for
/// enumeration, as well as ensure that all endpoints previously allocated with alloc_ep are
/// initialized as specified.
fn reset(&mut self);
/// Sets the device USB address to `addr`.
fn set_device_address(&mut self, addr: u8);
/// Sets or clears the STALL condition for an endpoint. If the endpoint is an OUT endpoint, it
/// should be prepared to receive data again. Only used during control transfers.
fn set_stalled(&mut self, ep_addr: EndpointAddress, stalled: bool);
/// Gets whether the STALL condition is set for an endpoint. Only used during control transfers.
fn is_stalled(&mut self, ep_addr: EndpointAddress) -> bool;
/// Causes the USB peripheral to enter USB suspend mode, lowering power consumption and
/// preparing to detect a USB wakeup event. This will be called after
/// [`poll`](crate::device::UsbDevice::poll) returns [`PollResult::Suspend`]. The device will
/// continue be polled, and it shall return a value other than `Suspend` from `poll` when it no
/// longer detects the suspend condition.
fn suspend(&mut self);
/// Resumes from suspend mode. This may only be called after the peripheral has been previously
/// suspended.
fn resume(&mut self);
/// Simulates a disconnect from the USB bus, causing the host to reset and re-enumerate the
/// device.
///
/// The default implementation just returns `Unsupported`.
///
/// # Errors
///
/// * [`Unsupported`](crate::UsbError::Unsupported) - This UsbBus implementation doesn't support
/// simulating a disconnect or it has not been enabled at creation time.
fn force_reset(&mut self) -> Result<(), Unsupported> {
Err(Unsupported)
}
}
pub trait Endpoint {
/// Get the endpoint address
fn info(&self) -> &EndpointInfo;
/// Sets or clears the STALL condition for an endpoint. If the endpoint is an OUT endpoint, it
/// should be prepared to receive data again.
fn set_stalled(&self, stalled: bool);
/// Gets whether the STALL condition is set for an endpoint.
fn is_stalled(&self) -> bool;
// TODO enable/disable?
}
pub trait EndpointOut: Endpoint {
type ReadFuture<'a>: Future<Output = Result<usize, ReadError>> + 'a
where
Self: 'a;
/// Reads a single packet of data from the endpoint, and returns the actual length of
/// the packet.
///
/// This should also clear any NAK flags and prepare the endpoint to receive the next packet.
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a>;
}
pub trait EndpointIn: Endpoint {
type WriteFuture<'a>: Future<Output = Result<(), WriteError>> + 'a
where
Self: 'a;
/// Writes a single packet of data to the endpoint.
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a>;
}

225
embassy-usb/src/fmt.rs Normal file
View File

@ -0,0 +1,225 @@
#![macro_use]
#![allow(unused_macros)]
#[cfg(all(feature = "defmt", feature = "log"))]
compile_error!("You may not enable both `defmt` and `log` features.");
macro_rules! assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert!($($x)*);
}
};
}
macro_rules! assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_eq!($($x)*);
}
};
}
macro_rules! assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_ne!($($x)*);
}
};
}
macro_rules! debug_assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert!($($x)*);
}
};
}
macro_rules! debug_assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_eq!($($x)*);
}
};
}
macro_rules! debug_assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_ne!($($x)*);
}
};
}
macro_rules! todo {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::todo!($($x)*);
#[cfg(feature = "defmt")]
::defmt::todo!($($x)*);
}
};
}
macro_rules! unreachable {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::unreachable!($($x)*);
#[cfg(feature = "defmt")]
::defmt::unreachable!($($x)*);
}
};
}
macro_rules! panic {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::panic!($($x)*);
#[cfg(feature = "defmt")]
::defmt::panic!($($x)*);
}
};
}
macro_rules! trace {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::trace!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::trace!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! debug {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::debug!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::debug!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! info {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::info!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::info!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! warn {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::warn!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::warn!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! error {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::error!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::error!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
#[cfg(feature = "defmt")]
macro_rules! unwrap {
($($x:tt)*) => {
::defmt::unwrap!($($x)*)
};
}
#[cfg(not(feature = "defmt"))]
macro_rules! unwrap {
($arg:expr) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {:?}", ::core::stringify!($arg), e);
}
}
};
($arg:expr, $($msg:expr),+ $(,)? ) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {}: {:?}", ::core::stringify!($arg), ::core::format_args!($($msg,)*), e);
}
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct NoneError;
pub trait Try {
type Ok;
type Error;
fn into_result(self) -> Result<Self::Ok, Self::Error>;
}
impl<T> Try for Option<T> {
type Ok = T;
type Error = NoneError;
#[inline]
fn into_result(self) -> Result<T, NoneError> {
self.ok_or(NoneError)
}
}
impl<T, E> Try for Result<T, E> {
type Ok = T;
type Error = E;
#[inline]
fn into_result(self) -> Self {
self
}
}

342
embassy-usb/src/lib.rs Normal file
View File

@ -0,0 +1,342 @@
#![no_std]
#![feature(generic_associated_types)]
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
mod builder;
mod control;
pub mod descriptor;
pub mod driver;
pub mod types;
use self::control::*;
use self::descriptor::*;
use self::driver::*;
use self::types::*;
pub use self::builder::Config;
pub use self::builder::UsbDeviceBuilder;
/// The global state of the USB device.
///
/// In general class traffic is only possible in the `Configured` state.
#[repr(u8)]
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum UsbDeviceState {
/// The USB device has just been created or reset.
Default,
/// The USB device has received an address from the host.
Addressed,
/// The USB device has been configured and is fully functional.
Configured,
/// The USB device has been suspended by the host or it has been unplugged from the USB bus.
Suspend,
}
/// The bConfiguration value for the not configured state.
pub const CONFIGURATION_NONE: u8 = 0;
/// The bConfiguration value for the single configuration supported by this device.
pub const CONFIGURATION_VALUE: u8 = 1;
/// The default value for bAlternateSetting for all interfaces.
pub const DEFAULT_ALTERNATE_SETTING: u8 = 0;
pub struct UsbDevice<'d, D: Driver<'d>> {
driver: D::Bus,
control_in: D::EndpointIn,
control_out: D::EndpointOut,
config: Config<'d>,
device_descriptor: &'d [u8],
config_descriptor: &'d [u8],
bos_descriptor: &'d [u8],
device_state: UsbDeviceState,
remote_wakeup_enabled: bool,
self_powered: bool,
pending_address: u8,
}
impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
pub(crate) fn build(
mut driver: D,
config: Config<'d>,
device_descriptor: &'d [u8],
config_descriptor: &'d [u8],
bos_descriptor: &'d [u8],
) -> Self {
let control_out = driver
.alloc_endpoint_out(
Some(0x00.into()),
EndpointType::Control,
config.max_packet_size_0 as u16,
0,
)
.expect("failed to alloc control endpoint");
let control_in = driver
.alloc_endpoint_in(
Some(0x80.into()),
EndpointType::Control,
config.max_packet_size_0 as u16,
0,
)
.expect("failed to alloc control endpoint");
// Enable the USB bus.
// This prevent further allocation by consuming the driver.
let driver = driver.enable();
Self {
driver,
config,
control_in,
control_out,
device_descriptor,
config_descriptor,
bos_descriptor,
device_state: UsbDeviceState::Default,
remote_wakeup_enabled: false,
self_powered: false,
pending_address: 0,
}
}
pub async fn run(&mut self) {
loop {
let mut buf = [0; 8];
let n = self.control_out.read(&mut buf).await.unwrap();
assert_eq!(n, 8);
let req = Request::parse(&buf).unwrap();
info!("setup request: {:x}", req);
// Now that we have properly parsed the setup packet, ensure the end-point is no longer in
// a stalled state.
self.control_out.set_stalled(false);
match req.direction {
UsbDirection::In => self.handle_control_in(req).await,
UsbDirection::Out => self.handle_control_out(req).await,
}
}
}
async fn write_chunked(&mut self, data: &[u8]) -> Result<(), driver::WriteError> {
for c in data.chunks(8) {
self.control_in.write(c).await?;
}
if data.len() % 8 == 0 {
self.control_in.write(&[]).await?;
}
Ok(())
}
async fn control_out_accept(&mut self, req: Request) {
info!("control out accept");
// status phase
// todo: cleanup
self.control_out.read(&mut []).await.unwrap();
}
async fn control_in_accept(&mut self, req: Request, data: &[u8]) {
info!("control accept {:x}", data);
let len = data.len().min(req.length as _);
if let Err(e) = self.write_chunked(&data[..len]).await {
info!("write_chunked failed: {:?}", e);
}
// status phase
// todo: cleanup
self.control_out.read(&mut []).await.unwrap();
}
async fn control_in_accept_writer(
&mut self,
req: Request,
f: impl FnOnce(&mut DescriptorWriter),
) {
let mut buf = [0; 256];
let mut w = DescriptorWriter::new(&mut buf);
f(&mut w);
let pos = w.position();
self.control_in_accept(req, &buf[..pos]).await;
}
fn control_reject(&mut self, req: Request) {
self.control_out.set_stalled(true);
}
async fn handle_control_out(&mut self, req: Request) {
// TODO actually read the data if there's an OUT data phase.
const CONFIGURATION_NONE_U16: u16 = CONFIGURATION_NONE as u16;
const CONFIGURATION_VALUE_U16: u16 = CONFIGURATION_VALUE as u16;
const DEFAULT_ALTERNATE_SETTING_U16: u16 = DEFAULT_ALTERNATE_SETTING as u16;
match req.request_type {
RequestType::Standard => match (req.recipient, req.request, req.value) {
(
Recipient::Device,
Request::CLEAR_FEATURE,
Request::FEATURE_DEVICE_REMOTE_WAKEUP,
) => {
self.remote_wakeup_enabled = false;
self.control_out_accept(req).await;
}
(Recipient::Endpoint, Request::CLEAR_FEATURE, Request::FEATURE_ENDPOINT_HALT) => {
//self.bus.set_stalled(((req.index as u8) & 0x8f).into(), false);
self.control_out_accept(req).await;
}
(
Recipient::Device,
Request::SET_FEATURE,
Request::FEATURE_DEVICE_REMOTE_WAKEUP,
) => {
self.remote_wakeup_enabled = true;
self.control_out_accept(req).await;
}
(Recipient::Endpoint, Request::SET_FEATURE, Request::FEATURE_ENDPOINT_HALT) => {
//self.bus.set_stalled(((req.index as u8) & 0x8f).into(), true);
self.control_out_accept(req).await;
}
(Recipient::Device, Request::SET_ADDRESS, 1..=127) => {
self.pending_address = req.value as u8;
// on NRF the hardware auto-handles SET_ADDRESS.
self.control_out_accept(req).await;
}
(Recipient::Device, Request::SET_CONFIGURATION, CONFIGURATION_VALUE_U16) => {
self.device_state = UsbDeviceState::Configured;
self.control_out_accept(req).await;
}
(Recipient::Device, Request::SET_CONFIGURATION, CONFIGURATION_NONE_U16) => {
match self.device_state {
UsbDeviceState::Default => {
self.control_out_accept(req).await;
}
_ => {
self.device_state = UsbDeviceState::Addressed;
self.control_out_accept(req).await;
}
}
}
(Recipient::Interface, Request::SET_INTERFACE, DEFAULT_ALTERNATE_SETTING_U16) => {
// TODO: do something when alternate settings are implemented
self.control_out_accept(req).await;
}
_ => self.control_reject(req),
},
_ => self.control_reject(req),
}
}
async fn handle_control_in(&mut self, req: Request) {
match req.request_type {
RequestType::Standard => match (req.recipient, req.request) {
(Recipient::Device, Request::GET_STATUS) => {
let mut status: u16 = 0x0000;
if self.self_powered {
status |= 0x0001;
}
if self.remote_wakeup_enabled {
status |= 0x0002;
}
self.control_in_accept(req, &status.to_le_bytes()).await;
}
(Recipient::Interface, Request::GET_STATUS) => {
let status: u16 = 0x0000;
self.control_in_accept(req, &status.to_le_bytes()).await;
}
(Recipient::Endpoint, Request::GET_STATUS) => {
let ep_addr: EndpointAddress = ((req.index as u8) & 0x8f).into();
let mut status: u16 = 0x0000;
if self.driver.is_stalled(ep_addr) {
status |= 0x0001;
}
self.control_in_accept(req, &status.to_le_bytes()).await;
}
(Recipient::Device, Request::GET_DESCRIPTOR) => {
self.handle_get_descriptor(req).await;
}
(Recipient::Device, Request::GET_CONFIGURATION) => {
let status = match self.device_state {
UsbDeviceState::Configured => CONFIGURATION_VALUE,
_ => CONFIGURATION_NONE,
};
self.control_in_accept(req, &status.to_le_bytes()).await;
}
(Recipient::Interface, Request::GET_INTERFACE) => {
// TODO: change when alternate settings are implemented
let status = DEFAULT_ALTERNATE_SETTING;
self.control_in_accept(req, &status.to_le_bytes()).await;
}
_ => self.control_reject(req),
},
_ => self.control_reject(req),
}
}
async fn handle_get_descriptor(&mut self, req: Request) {
let (dtype, index) = req.descriptor_type_index();
let config = self.config.clone();
match dtype {
descriptor_type::BOS => self.control_in_accept(req, self.bos_descriptor).await,
descriptor_type::DEVICE => self.control_in_accept(req, self.device_descriptor).await,
descriptor_type::CONFIGURATION => {
self.control_in_accept(req, self.config_descriptor).await
}
descriptor_type::STRING => {
if index == 0 {
self.control_in_accept_writer(req, |w| {
w.write(descriptor_type::STRING, &lang_id::ENGLISH_US.to_le_bytes())
.unwrap();
})
.await
} else {
let s = match index {
1 => self.config.manufacturer,
2 => self.config.product,
3 => self.config.serial_number,
_ => {
let index = StringIndex::new(index);
let lang_id = req.index;
None
//classes
// .iter()
// .filter_map(|cls| cls.get_string(index, lang_id))
// .nth(0)
}
};
if let Some(s) = s {
self.control_in_accept_writer(req, |w| w.string(s).unwrap())
.await;
} else {
self.control_reject(req)
}
}
}
_ => self.control_reject(req),
}
}
}

138
embassy-usb/src/types.rs Normal file
View File

@ -0,0 +1,138 @@
/// Direction of USB traffic. Note that in the USB standard the direction is always indicated from
/// the perspective of the host, which is backward for devices, but the standard directions are used
/// for consistency.
///
/// The values of the enum also match the direction bit used in endpoint addresses and control
/// request types.
#[repr(u8)]
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum UsbDirection {
/// Host to device (OUT)
Out = 0x00,
/// Device to host (IN)
In = 0x80,
}
impl From<u8> for UsbDirection {
fn from(value: u8) -> Self {
unsafe { core::mem::transmute(value & 0x80) }
}
}
/// USB endpoint transfer type. The values of this enum can be directly cast into `u8` to get the
/// transfer bmAttributes transfer type bits.
#[repr(u8)]
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum EndpointType {
/// Control endpoint. Used for device management. Only the host can initiate requests. Usually
/// used only endpoint 0.
Control = 0b00,
/// Isochronous endpoint. Used for time-critical unreliable data. Not implemented yet.
Isochronous = 0b01,
/// Bulk endpoint. Used for large amounts of best-effort reliable data.
Bulk = 0b10,
/// Interrupt endpoint. Used for small amounts of time-critical reliable data.
Interrupt = 0b11,
}
/// Type-safe endpoint address.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct EndpointAddress(u8);
impl From<u8> for EndpointAddress {
#[inline]
fn from(addr: u8) -> EndpointAddress {
EndpointAddress(addr)
}
}
impl From<EndpointAddress> for u8 {
#[inline]
fn from(addr: EndpointAddress) -> u8 {
addr.0
}
}
impl EndpointAddress {
const INBITS: u8 = UsbDirection::In as u8;
/// Constructs a new EndpointAddress with the given index and direction.
#[inline]
pub fn from_parts(index: usize, dir: UsbDirection) -> Self {
EndpointAddress(index as u8 | dir as u8)
}
/// Gets the direction part of the address.
#[inline]
pub fn direction(&self) -> UsbDirection {
if (self.0 & Self::INBITS) != 0 {
UsbDirection::In
} else {
UsbDirection::Out
}
}
/// Returns true if the direction is IN, otherwise false.
#[inline]
pub fn is_in(&self) -> bool {
(self.0 & Self::INBITS) != 0
}
/// Returns true if the direction is OUT, otherwise false.
#[inline]
pub fn is_out(&self) -> bool {
(self.0 & Self::INBITS) == 0
}
/// Gets the index part of the endpoint address.
#[inline]
pub fn index(&self) -> usize {
(self.0 & !Self::INBITS) as usize
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct EndpointInfo {
pub addr: EndpointAddress,
pub ep_type: EndpointType,
pub max_packet_size: u16,
pub interval: u8,
}
/// A handle for a USB interface that contains its number.
#[derive(Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct InterfaceNumber(u8);
impl InterfaceNumber {
pub(crate) fn new(index: u8) -> InterfaceNumber {
InterfaceNumber(index)
}
}
impl From<InterfaceNumber> for u8 {
fn from(n: InterfaceNumber) -> u8 {
n.0
}
}
/// A handle for a USB string descriptor that contains its index.
#[derive(Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct StringIndex(u8);
impl StringIndex {
pub(crate) fn new(index: u8) -> StringIndex {
StringIndex(index)
}
}
impl From<StringIndex> for u8 {
fn from(i: StringIndex) -> u8 {
i.0
}
}