Simplifies the API by taking in the TIMER and PPI channels
This commit is contained in:
parent
98bdac51fe
commit
3990f09b29
@ -10,7 +10,8 @@ use embassy_hal_common::unborrow;
|
||||
use futures::future::poll_fn;
|
||||
|
||||
use crate::interrupt;
|
||||
use crate::ppi::{Event, Task};
|
||||
use crate::ppi::{ConfigurableChannel, Event, Ppi, Task};
|
||||
use crate::timer::{Frequency, Instance as TimerInstance, Timer};
|
||||
use crate::{pac, peripherals};
|
||||
|
||||
use pac::{saadc, SAADC};
|
||||
@ -297,36 +298,67 @@ impl<'d, const N: usize> Saadc<'d, N> {
|
||||
|
||||
/// Continuous sampling with double buffers.
|
||||
///
|
||||
/// NOTE: It is important that the time spent within the callback supplied
|
||||
/// does not exceed the time taken to acquire the samples into a single buffer.
|
||||
/// You should measure the time taken by the callback and set the sample buffer
|
||||
/// size accordingly. Exceeding this time can lead to the peripheral re-writing
|
||||
/// the other buffer.
|
||||
///
|
||||
/// A task-driven approach to driving TASK_SAMPLE is expected. With a task
|
||||
/// driven approach, multiple channels can be used.
|
||||
///
|
||||
/// In addition, the caller is responsible for triggering TASK_START in
|
||||
/// relation to the previous one having ended (EVENTS_END). The the initial
|
||||
/// TASKS_START is triggered by this method.
|
||||
///
|
||||
/// A closure is provided so that any required initialization such as starting
|
||||
/// the sampling task can occur once the peripheral has been started.
|
||||
/// A TIMER and two PPI peripherals are passed in so that precise sampling
|
||||
/// can be attained. The sampling interval is expressed by selecting a
|
||||
/// timer clock frequency to use along with a counter threshold to be reached.
|
||||
/// For example, 1KHz can be achieved using a frequency of 1MHz and a counter
|
||||
/// threshold of 1000.
|
||||
///
|
||||
/// A sampler closure is provided that receives the buffer of samples, noting
|
||||
/// that the size of this buffer can be less than the original buffer's size.
|
||||
/// A command is return from the closure that indicates whether the sampling
|
||||
/// should continue or stop.
|
||||
pub async fn run_task_sampler<I, S, const N0: usize>(
|
||||
///
|
||||
/// NOTE: The time spent within the callback supplied should not exceed the time
|
||||
/// taken to acquire the samples into a single buffer. You should measure the
|
||||
/// time taken by the callback and set the sample buffer size accordingly.
|
||||
/// Exceeding this time can lead to samples becoming dropped.
|
||||
pub async fn run_task_sampler<S, T: TimerInstance, const N0: usize>(
|
||||
&mut self,
|
||||
timer: &mut T,
|
||||
ppi_ch1: &mut impl ConfigurableChannel,
|
||||
ppi_ch2: &mut impl ConfigurableChannel,
|
||||
frequency: Frequency,
|
||||
sample_counter: u32,
|
||||
bufs: &mut [[[i16; N]; N0]; 2],
|
||||
init: I,
|
||||
sampler: S,
|
||||
) where
|
||||
I: FnMut(),
|
||||
S: FnMut(&[[i16; N]]) -> SamplerState,
|
||||
{
|
||||
self.run_sampler(bufs, None, init, sampler).await;
|
||||
let r = Self::regs();
|
||||
|
||||
// We want the task start to effectively short with the last one ending so
|
||||
// we don't miss any samples. It'd be great for the SAADC to offer a SHORTS
|
||||
// register instead, but it doesn't, so we must use PPI.
|
||||
let mut start_ppi = Ppi::new_one_to_one(
|
||||
ppi_ch1,
|
||||
Event::from_reg(&r.events_end),
|
||||
Task::from_reg(&r.tasks_start),
|
||||
);
|
||||
start_ppi.enable();
|
||||
|
||||
let mut timer = Timer::new(timer);
|
||||
timer.set_frequency(frequency);
|
||||
timer.cc(0).write(sample_counter);
|
||||
timer.cc(0).short_compare_clear();
|
||||
|
||||
let mut sample_ppi = Ppi::new_one_to_one(
|
||||
ppi_ch2,
|
||||
timer.cc(0).event_compare(),
|
||||
Task::from_reg(&r.tasks_sample),
|
||||
);
|
||||
|
||||
timer.start();
|
||||
|
||||
self.run_sampler(
|
||||
bufs,
|
||||
None,
|
||||
|| {
|
||||
sample_ppi.enable();
|
||||
},
|
||||
sampler,
|
||||
)
|
||||
.await;
|
||||
}
|
||||
|
||||
async fn run_sampler<I, S, const N0: usize>(
|
||||
@ -424,31 +456,13 @@ impl<'d, const N: usize> Saadc<'d, N> {
|
||||
})
|
||||
.await;
|
||||
}
|
||||
|
||||
/// Return the end event for use with PPI
|
||||
pub fn event_end(&self) -> Event {
|
||||
let r = Self::regs();
|
||||
Event::from_reg(&r.events_end)
|
||||
}
|
||||
|
||||
/// Return the sample task for use with PPI
|
||||
pub fn task_sample(&self) -> Task {
|
||||
let r = Self::regs();
|
||||
Task::from_reg(&r.tasks_sample)
|
||||
}
|
||||
|
||||
/// Return the start task for use with PPI
|
||||
pub fn task_start(&self) -> Task {
|
||||
let r = Self::regs();
|
||||
Task::from_reg(&r.tasks_start)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d> Saadc<'d, 1> {
|
||||
/// Continuous sampling on a single channel with double buffers.
|
||||
///
|
||||
/// The internal clock is to be used with a sample rate expressed as a divisor of
|
||||
/// 16MHz, ranging from 80..2047. For example, 1600 represnts a sample rate of 10KHz
|
||||
/// 16MHz, ranging from 80..2047. For example, 1600 represents a sample rate of 10KHz
|
||||
/// given 16_000_000 / 10_000_000 = 1600.
|
||||
///
|
||||
/// A sampler closure is provided that receives the buffer of samples, noting
|
||||
|
@ -6,9 +6,8 @@
|
||||
mod example_common;
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::time::Duration;
|
||||
use embassy_nrf::ppi::Ppi;
|
||||
use embassy_nrf::saadc::{ChannelConfig, Config, Saadc, SamplerState};
|
||||
use embassy_nrf::timer::{Frequency, Timer};
|
||||
use embassy_nrf::timer::Frequency;
|
||||
use embassy_nrf::{interrupt, Peripherals};
|
||||
use example_common::*;
|
||||
|
||||
@ -27,21 +26,6 @@ async fn main(_spawner: Spawner, mut p: Peripherals) {
|
||||
[channel_1_config, channel_2_config, channel_3_config],
|
||||
);
|
||||
|
||||
// We want the task start to effectively short with the last one ending so
|
||||
// we don't miss any samples. The Saadc will trigger the initial TASKS_START.
|
||||
let mut start_ppi = Ppi::new_one_to_one(p.PPI_CH0, saadc.event_end(), saadc.task_start());
|
||||
start_ppi.enable();
|
||||
|
||||
let mut timer = Timer::new(p.TIMER0);
|
||||
timer.set_frequency(Frequency::F1MHz);
|
||||
timer.cc(0).write(1000); // We want to sample at 1KHz
|
||||
timer.cc(0).short_compare_clear();
|
||||
|
||||
let mut sample_ppi =
|
||||
Ppi::new_one_to_one(p.PPI_CH1, timer.cc(0).event_compare(), saadc.task_sample());
|
||||
|
||||
timer.start();
|
||||
|
||||
// This delay demonstrates that starting the timer prior to running
|
||||
// the task sampler is benign given the calibration that follows.
|
||||
embassy::time::Timer::after(Duration::from_millis(500)).await;
|
||||
@ -54,10 +38,12 @@ async fn main(_spawner: Spawner, mut p: Peripherals) {
|
||||
|
||||
saadc
|
||||
.run_task_sampler(
|
||||
&mut p.TIMER0,
|
||||
&mut p.PPI_CH0,
|
||||
&mut p.PPI_CH1,
|
||||
Frequency::F1MHz,
|
||||
1000, // We want to sample at 1KHz
|
||||
&mut bufs,
|
||||
|| {
|
||||
sample_ppi.enable();
|
||||
},
|
||||
move |buf| {
|
||||
// NOTE: It is important that the time spent within this callback
|
||||
// does not exceed the time taken to acquire the 1500 samples we
|
||||
|
Loading…
x
Reference in New Issue
Block a user