[feature] Add rcc register support for F3

This commit is contained in:
VasanthakumarV 2021-12-10 11:40:03 +05:30
parent e2c074d133
commit 3f33d307ff
2 changed files with 378 additions and 1 deletions

View File

@ -0,0 +1,374 @@
use core::marker::PhantomData;
use embassy::util::Unborrow;
use crate::pac::{
flash::vals::Latency,
rcc::vals::{Hpre, Hsebyp, Pllmul, Pllsrc, Ppre, Prediv, Sw, Usbpre},
FLASH, RCC,
};
use crate::peripherals;
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
const HSI: u32 = 8_000_000;
/// RCC peripheral
pub struct Rcc<'d> {
config: Config,
phantom: PhantomData<&'d mut peripherals::RCC>,
}
/// Clocks configutation
#[non_exhaustive]
#[derive(Default)]
pub struct Config {
/// Frequency of HSE oscillator
/// 4MHz to 32MHz
pub hse: Option<Hertz>,
/// Bypass HSE for an external clock
pub bypass_hse: bool,
/// Frequency of the System Clock
pub sysclk: Option<Hertz>,
/// Frequency of AHB bus
pub hclk: Option<Hertz>,
/// Frequency of APB1 bus
/// - Max frequency 36MHz
pub pclk1: Option<Hertz>,
/// Frequency of APB2 bus
/// - Max frequency with HSE is 72MHz
/// - Max frequency without HSE is 64MHz
pub pclk2: Option<Hertz>,
/// USB clock setup
/// It is valid only when,
/// - HSE is enabled,
/// - The System clock frequency is either 48MHz or 72MHz
/// - APB1 clock has a minimum frequency of 10MHz
pub pll48: bool,
}
// Information required to setup the PLL clock
struct PllConfig {
pll_src: Pllsrc,
pll_mul: Pllmul,
pll_div: Option<Prediv>,
}
/// Initialize and Set the clock frequencies
pub unsafe fn init(config: Config) {
let r = <peripherals::RCC as embassy::util::Steal>::steal();
let clocks = Rcc::new(r, config).freeze();
set_freqs(clocks);
}
impl<'d> Rcc<'d> {
pub fn new(_rcc: impl Unborrow<Target = peripherals::RCC> + 'd, config: Config) -> Self {
Self {
config,
phantom: PhantomData,
}
}
fn freeze(self) -> Clocks {
// Calculate the real System clock, and PLL configuration if applicable
let (Hertz(sysclk), pll_config) = self.get_sysclk();
assert!(sysclk <= 72_000_000);
// Calculate real AHB clock
let hclk = self.config.hclk.map(|h| h.0).unwrap_or(sysclk);
let (hpre_bits, hpre_div) = match sysclk / hclk {
0 => unreachable!(),
1 => (Hpre::DIV1, 1),
2 => (Hpre::DIV2, 2),
3..=5 => (Hpre::DIV4, 4),
6..=11 => (Hpre::DIV8, 8),
12..=39 => (Hpre::DIV16, 16),
40..=95 => (Hpre::DIV64, 64),
96..=191 => (Hpre::DIV128, 128),
192..=383 => (Hpre::DIV256, 256),
_ => (Hpre::DIV512, 512),
};
let hclk = sysclk / hpre_div;
assert!(hclk <= 72_000_000);
// Calculate real APB1 clock
let pclk1 = self.config.pclk1.map(|p| p.0).unwrap_or(hclk);
let (ppre1_bits, ppre1) = match hclk / pclk1 {
0 => unreachable!(),
1 => (Ppre::DIV1, 1),
2 => (Ppre::DIV2, 2),
3..=5 => (Ppre::DIV4, 4),
6..=11 => (Ppre::DIV8, 8),
_ => (Ppre::DIV16, 16),
};
let timer_mul1 = if ppre1 == 1 { 1 } else { 2 };
let pclk1 = hclk / ppre1;
assert!(pclk1 <= 36_000_000);
// Calculate real APB2 clock
let pclk2 = self.config.pclk2.map(|p| p.0).unwrap_or(hclk);
let (ppre2_bits, ppre2) = match hclk / pclk2 {
0 => unreachable!(),
1 => (Ppre::DIV1, 1),
2 => (Ppre::DIV2, 2),
3..=5 => (Ppre::DIV4, 4),
6..=11 => (Ppre::DIV8, 8),
_ => (Ppre::DIV16, 16),
};
let timer_mul2 = if ppre2 == 1 { 1 } else { 2 };
let pclk2 = hclk / ppre2;
assert!(pclk2 <= 72_000_000);
// Set latency based on HCLK frquency
// NOTE(safety) Atomic write
unsafe {
FLASH.acr().write(|w| {
w.set_latency(if hclk <= 24_000_000 {
Latency::WS0
} else if hclk <= 48_000_000 {
Latency::WS1
} else {
Latency::WS2
});
})
}
// Enable HSE
if self.config.hse.is_some() {
// NOTE(unsafe) We own the peripheral block
unsafe {
RCC.cr().write(|w| {
w.set_hsebyp(if self.config.bypass_hse {
Hsebyp::BYPASSED
} else {
Hsebyp::NOTBYPASSED
});
// We turn on clock security to switch to HSI when HSE fails
w.set_csson(true);
w.set_hseon(true);
});
while !RCC.cr().read().hserdy() {}
}
}
// Enable PLL
if let Some(ref pll_config) = pll_config {
// NOTE(unsafe) We own the peripheral block
unsafe {
RCC.cfgr().write(|w| {
w.set_pllmul(pll_config.pll_mul);
w.set_pllsrc(pll_config.pll_src);
});
if let Some(pll_div) = pll_config.pll_div {
RCC.cfgr2().write(|w| w.set_prediv(pll_div));
}
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
}
}
if self.config.pll48 {
let usb_pre = self.get_usb_pre(sysclk, pclk1, &pll_config);
// NOTE(unsafe) We own the peripheral block
unsafe {
RCC.cfgr().write(|w| {
w.set_usbpre(usb_pre);
});
}
}
// Set prescalers
unsafe {
// NOTE(unsafe) We own the peripheral block
RCC.cfgr().write(|w| {
w.set_ppre2(ppre2_bits);
w.set_ppre1(ppre1_bits);
w.set_hpre(hpre_bits);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from
// 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
// NOTE(unsafe) We own the peripheral block
RCC.cfgr().write(|w| {
w.set_sw(match (pll_config, self.config.hse) {
(Some(_), _) => Sw::PLL,
(None, Some(_)) => Sw::HSE,
(None, None) => Sw::HSI,
})
});
}
Clocks {
sys: Hertz(sysclk),
apb1: Hertz(pclk1),
apb2: Hertz(pclk2),
apb1_tim: Hertz(pclk1 * timer_mul1),
apb2_tim: Hertz(pclk2 * timer_mul2),
ahb: Hertz(hclk),
}
}
#[inline]
fn get_sysclk(&self) -> (Hertz, Option<PllConfig>) {
match (self.config.sysclk, self.config.hse) {
(Some(sysclk), Some(hse)) if sysclk == hse => (hse, None),
(Some(sysclk), None) if sysclk.0 == HSI => (Hertz(HSI), None),
// If the user selected System clock is different from HSI or HSE
// we will have to setup PLL clock source
(Some(sysclk), _) => {
let (sysclk, pll_config) = self.calc_pll(sysclk);
(sysclk, Some(pll_config))
}
(None, Some(hse)) => (hse, None),
(None, None) => (Hertz(HSI), None),
}
}
#[inline]
fn calc_pll(&self, Hertz(sysclk): Hertz) -> (Hertz, PllConfig) {
// Calculates the Multiplier and the Divisor to arrive at
// the required System clock from PLL source frequency
let get_mul_div = |sysclk, pllsrcclk| {
let common_div = gcd(sysclk, pllsrcclk);
let mut multiplier = sysclk / common_div;
let mut divisor = pllsrcclk / common_div;
// Minimum PLL multiplier is two
if multiplier == 1 {
multiplier *= 2;
divisor *= 2;
}
assert!(multiplier <= 16);
assert!(divisor <= 16);
(multiplier, divisor)
};
// Based on the source of Pll, we calculate the actual system clock
// frequency, PLL's source identifier, multiplier and divisor
let (act_sysclk, pll_src, pll_mul, pll_div) = match self.config.hse {
Some(Hertz(hse)) => {
let (multiplier, divisor) = get_mul_div(sysclk, hse);
(
Hertz((hse / divisor) * multiplier),
Pllsrc::HSE_DIV_PREDIV,
into_pll_mul(multiplier),
Some(into_pre_div(divisor)),
)
}
None => {
cfg_if::cfg_if! {
// For some chips PREDIV is always two, and cannot be changed
if #[cfg(any(
feature="stm32f302xd", feature="stm32f302xe", feature="stm32f303xd",
feature="stm32f303xe", feature="stm32f398xe"
))] {
let (multiplier, divisor) = get_mul_div(sysclk, HSI);
(
Hertz((hse / divisor) * multiplier),
Pllsrc::HSI_DIV_PREDIV,
into_pll_mul(multiplier),
Some(into_pre_div(divisor)),
)
} else {
let pllsrcclk = HSI / 2;
let multiplier = sysclk / pllsrcclk;
assert!(multiplier <= 16);
(
Hertz(pllsrcclk * multiplier),
Pllsrc::HSI_DIV2,
into_pll_mul(multiplier),
None,
)
}
}
}
};
(
act_sysclk,
PllConfig {
pll_src,
pll_mul,
pll_div,
},
)
}
#[inline]
fn get_usb_pre(&self, sysclk: u32, pclk1: u32, pll_config: &Option<PllConfig>) -> Usbpre {
cfg_if::cfg_if! {
// Some chips do not have USB
if #[cfg(any(stm32f301, stm32f318, stm32f334))] {
panic!("USB clock not supported by the chip");
} else {
let usb_ok = self.config.hse.is_some() && pll_config.is_some() && (pclk1 >= 10_000_000);
match (usb_ok, sysclk) {
(true, 72_000_000) => Usbpre::DIV1_5,
(true, 48_000_000) => Usbpre::DIV1,
_ => panic!(
"USB clock is only valid if the PLL output frequency is either 48MHz or 72MHz"
),
}
}
}
}
}
// This function assumes cases when multiplier is one and it
// being greater than 16 is made impossible
#[inline]
fn into_pll_mul(multiplier: u32) -> Pllmul {
match multiplier {
2 => Pllmul::MUL2,
3 => Pllmul::MUL3,
4 => Pllmul::MUL4,
5 => Pllmul::MUL5,
6 => Pllmul::MUL6,
7 => Pllmul::MUL7,
8 => Pllmul::MUL8,
9 => Pllmul::MUL9,
10 => Pllmul::MUL10,
11 => Pllmul::MUL11,
12 => Pllmul::MUL12,
13 => Pllmul::MUL13,
14 => Pllmul::MUL14,
15 => Pllmul::MUL15,
16 => Pllmul::MUL16,
_ => unreachable!(),
}
}
// This function assumes the incoming divisor cannot be greater
// than 16
#[inline]
fn into_pre_div(divisor: u32) -> Prediv {
match divisor {
1 => Prediv::DIV1,
2 => Prediv::DIV2,
3 => Prediv::DIV3,
4 => Prediv::DIV4,
5 => Prediv::DIV5,
6 => Prediv::DIV6,
7 => Prediv::DIV7,
8 => Prediv::DIV8,
9 => Prediv::DIV9,
10 => Prediv::DIV10,
11 => Prediv::DIV11,
12 => Prediv::DIV12,
13 => Prediv::DIV13,
14 => Prediv::DIV14,
15 => Prediv::DIV15,
16 => Prediv::DIV16,
_ => unreachable!(),
}
}
// Determine GCD using Euclidean algorithm
#[inline]
fn gcd(mut a: u32, mut b: u32) -> u32 {
while b != 0 {
let r = a % b;
a = b;
b = r;
}
a
}

View File

@ -26,7 +26,7 @@ pub struct Clocks {
#[cfg(any(rcc_wl5, rcc_u5))]
pub apb3: Hertz,
#[cfg(any(rcc_l0, rcc_l1, rcc_f0, rcc_f1, rcc_f0x0, rcc_g0))]
#[cfg(any(rcc_l0, rcc_l1, rcc_f0, rcc_f1, rcc_f3, rcc_f0x0, rcc_g0))]
pub ahb: Hertz,
#[cfg(any(rcc_l4, rcc_f4, rcc_f7, rcc_h7, rcc_g4, rcc_u5, rcc_wb, rcc_wl5))]
@ -81,6 +81,9 @@ cfg_if::cfg_if! {
} else if #[cfg(rcc_f1)] {
mod f1;
pub use f1::*;
} else if #[cfg(rcc_f3)] {
mod f3;
pub use f3::*;
} else if #[cfg(rcc_f4)] {
mod f4;
pub use f4::*;