Ring-buffered uart rx with one-period overrun detection

This commit is contained in:
Rasmus Melchior Jacobsen 2023-04-26 10:51:23 +02:00 committed by Dario Nieuwenhuis
parent 855c0d1423
commit 49455792cb
9 changed files with 1177 additions and 24 deletions

View File

@ -9,6 +9,7 @@ use embassy_hal_common::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker; use embassy_sync::waitqueue::AtomicWaker;
use pac::dma::regs; use pac::dma::regs;
use super::ringbuffer::{DmaCtrl, DmaRingBuffer, OverrunError};
use super::word::{Word, WordSize}; use super::word::{Word, WordSize};
use super::Dir; use super::Dir;
use crate::_generated::DMA_CHANNEL_COUNT; use crate::_generated::DMA_CHANNEL_COUNT;
@ -445,7 +446,6 @@ impl<'a, C: Channel> Future for Transfer<'a, C> {
// ================================== // ==================================
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct DoubleBuffered<'a, C: Channel, W: Word> { pub struct DoubleBuffered<'a, C: Channel, W: Word> {
channel: PeripheralRef<'a, C>, channel: PeripheralRef<'a, C>,
_phantom: PhantomData<W>, _phantom: PhantomData<W>,
@ -578,15 +578,6 @@ impl<'a, C: Channel, W: Word> DoubleBuffered<'a, C, W> {
let ch = self.channel.regs().st(self.channel.num()); let ch = self.channel.regs().st(self.channel.num());
unsafe { ch.ndtr().read() }.ndt() unsafe { ch.ndtr().read() }.ndt()
} }
pub fn blocking_wait(mut self) {
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
core::mem::forget(self);
}
} }
impl<'a, C: Channel, W: Word> Drop for DoubleBuffered<'a, C, W> { impl<'a, C: Channel, W: Word> Drop for DoubleBuffered<'a, C, W> {
@ -598,3 +589,178 @@ impl<'a, C: Channel, W: Word> Drop for DoubleBuffered<'a, C, W> {
fence(Ordering::SeqCst); fence(Ordering::SeqCst);
} }
} }
// ==============================
impl<C: Channel> DmaCtrl for C {
fn tcif(&self) -> bool {
let channel_number = self.num();
let dma = self.regs();
let isrn = channel_number / 4;
let isrbit = channel_number % 4;
unsafe { dma.isr(isrn).read() }.tcif(isrbit)
}
fn clear_tcif(&mut self) {
let channel_number = self.num();
let dma = self.regs();
let isrn = channel_number / 4;
let isrbit = channel_number % 4;
unsafe {
dma.ifcr(isrn).write(|w| {
w.set_tcif(isrbit, true);
})
}
}
fn ndtr(&self) -> usize {
let ch = self.regs().st(self.num());
unsafe { ch.ndtr().read() }.ndt() as usize
}
}
pub struct RingBuffer<'a, C: Channel, W: Word> {
cr: regs::Cr,
channel: PeripheralRef<'a, C>,
ringbuf: DmaRingBuffer<'a, W>,
}
impl<'a, C: Channel, W: Word> RingBuffer<'a, C, W> {
pub unsafe fn new_read(
channel: impl Peripheral<P = C> + 'a,
_request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
options: TransferOptions,
) -> Self {
into_ref!(channel);
let len = buffer.len();
assert!(len > 0 && len <= 0xFFFF);
let dir = Dir::PeripheralToMemory;
let data_size = W::size();
let channel_number = channel.num();
let dma = channel.regs();
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
let mut w = regs::Cr(0);
w.set_dir(dir.into());
w.set_msize(data_size.into());
w.set_psize(data_size.into());
w.set_pl(vals::Pl::VERYHIGH);
w.set_minc(vals::Inc::INCREMENTED);
w.set_pinc(vals::Inc::FIXED);
w.set_teie(true);
w.set_tcie(false);
w.set_circ(vals::Circ::ENABLED);
#[cfg(dma_v1)]
w.set_trbuff(true);
#[cfg(dma_v2)]
w.set_chsel(_request);
w.set_pburst(options.pburst.into());
w.set_mburst(options.mburst.into());
w.set_pfctrl(options.flow_ctrl.into());
w.set_en(true);
let buffer_ptr = buffer.as_mut_ptr();
let mut this = Self {
channel,
cr: w,
ringbuf: DmaRingBuffer::new(buffer),
};
this.clear_irqs();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&mut *this.channel, _request);
let ch = dma.st(channel_number);
ch.par().write_value(peri_addr as u32);
ch.m0ar().write_value(buffer_ptr as u32);
ch.ndtr().write_value(regs::Ndtr(len as _));
ch.fcr().write(|w| {
if let Some(fth) = options.fifo_threshold {
// FIFO mode
w.set_dmdis(vals::Dmdis::DISABLED);
w.set_fth(fth.into());
} else {
// Direct mode
w.set_dmdis(vals::Dmdis::ENABLED);
}
});
this
}
pub fn start(&mut self) {
let ch = self.channel.regs().st(self.channel.num());
unsafe { ch.cr().write_value(self.cr) }
}
pub fn clear(&mut self) {
self.ringbuf.clear();
}
/// Read bytes from the ring buffer
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, buf: &mut [W]) -> Result<usize, OverrunError> {
self.ringbuf.read(&mut *self.channel, buf)
}
fn clear_irqs(&mut self) {
let channel_number = self.channel.num();
let dma = self.channel.regs();
let isrn = channel_number / 4;
let isrbit = channel_number % 4;
unsafe {
dma.ifcr(isrn).write(|w| {
w.set_tcif(isrbit, true);
w.set_teif(isrbit, true);
})
}
}
pub fn request_stop(&mut self) {
let ch = self.channel.regs().st(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
unsafe {
ch.cr().write(|w| {
w.set_teie(true);
w.set_tcie(true);
})
}
}
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().st(self.channel.num());
unsafe { ch.cr().read() }.en()
}
/// Gets the total remaining transfers for the channel
/// Note: this will be zero for transfers that completed without cancellation.
pub fn get_remaining_transfers(&self) -> usize {
let ch = self.channel.regs().st(self.channel.num());
unsafe { ch.ndtr().read() }.ndt() as usize
}
pub fn set_ndtr(&mut self, ndtr: usize) {
self.ringbuf.ndtr = ndtr;
}
}
impl<'a, C: Channel, W: Word> Drop for RingBuffer<'a, C, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}

View File

@ -21,6 +21,7 @@ pub use gpdma::*;
#[cfg(dmamux)] #[cfg(dmamux)]
mod dmamux; mod dmamux;
pub(crate) mod ringbuffer;
pub mod word; pub mod word;
use core::mem; use core::mem;

View File

@ -0,0 +1,433 @@
use core::ops::Range;
use core::sync::atomic::{compiler_fence, Ordering};
use super::word::Word;
/// A "read-only" ring-buffer to be used together with the DMA controller which
/// writes in a circular way, "uncontrolled" to the buffer.
///
/// A snapshot of the ring buffer state can be attained by setting the `ndtr` field
/// to the current register value. `ndtr` describes the current position of the DMA
/// write.
///
/// # Safety
///
/// The ring buffer controls the TCIF (transfer completed interrupt flag) to
/// detect buffer overruns, hence this interrupt must be disabled.
/// The buffer can detect overruns up to one period, that is, for a X byte buffer,
/// overruns can be detected if they happen from byte X+1 up to 2X. After this
/// point, overrunds may or may not be detected.
///
/// # Buffer layout
///
/// ```text
/// Without wraparound: With wraparound:
///
/// + buf +--- NDTR ---+ + buf +---------- NDTR ----------+
/// | | | | | |
/// v v v v v v
/// +-----------------------------------------+ +-----------------------------------------+
/// |oooooooooooXXXXXXXXXXXXXXXXoooooooooooooo| |XXXXXXXXXXXXXooooooooooooXXXXXXXXXXXXXXXX|
/// +-----------------------------------------+ +-----------------------------------------+
/// ^ ^ ^ ^ ^ ^
/// | | | | | |
/// +- first --+ | +- end ------+ |
/// | | | |
/// +- end --------------------+ +- first ----------------+
/// ```
pub struct DmaRingBuffer<'a, W: Word> {
pub(crate) dma_buf: &'a mut [W],
first: usize,
pub ndtr: usize,
expect_next_read_to_wrap: bool,
}
#[derive(Debug, PartialEq)]
pub struct OverrunError;
pub trait DmaCtrl {
/// Get the NDTR register value, i.e. the space left in the underlying
/// buffer until the dma writer wraps.
fn ndtr(&self) -> usize;
/// Read the transfer completed interrupt flag
/// This flag is set by the dma controller when NDTR is reloaded,
/// i.e. when the writing wraps.
fn tcif(&self) -> bool;
/// Clear the transfer completed interrupt flag
fn clear_tcif(&mut self);
}
impl<'a, W: Word> DmaRingBuffer<'a, W> {
pub fn new(dma_buf: &'a mut [W]) -> Self {
let ndtr = dma_buf.len();
Self {
dma_buf,
first: 0,
ndtr,
expect_next_read_to_wrap: false,
}
}
/// Reset the ring buffer to its initial state
pub fn clear(&mut self) {
self.first = 0;
self.ndtr = self.dma_buf.len();
self.expect_next_read_to_wrap = false;
}
/// The buffer end position
fn end(&self) -> usize {
self.dma_buf.len() - self.ndtr
}
/// Returns whether the buffer is empty
#[allow(dead_code)]
pub fn is_empty(&self) -> bool {
self.first == self.end()
}
/// The current number of bytes in the buffer
/// This may change at any time if dma is currently active
#[allow(dead_code)]
pub fn len(&self) -> usize {
// Read out a stable end (the dma periheral can change it at anytime)
let end = self.end();
if self.first <= end {
// No wrap
end - self.first
} else {
self.dma_buf.len() - self.first + end
}
}
/// Read bytes from the ring buffer
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, dma: &mut impl DmaCtrl, buf: &mut [W]) -> Result<usize, OverrunError> {
let end = self.end();
compiler_fence(Ordering::SeqCst);
if self.first == end {
// The buffer is currently empty
if dma.tcif() {
// The dma controller has written such that the ring buffer now wraps
// This is the special case where exactly n*dma_buf.len(), n = 1,2,..., bytes was written,
// but where additional bytes are now written causing the ring buffer to wrap.
// This is only an error if the writing has passed the current unread region.
self.ndtr = dma.ndtr();
if self.end() > self.first {
dma.clear_tcif();
return Err(OverrunError);
}
}
self.expect_next_read_to_wrap = false;
Ok(0)
} else if self.first < end {
// The available, unread portion in the ring buffer DOES NOT wrap
if self.expect_next_read_to_wrap {
// The read was expected to wrap but it did not
dma.clear_tcif();
return Err(OverrunError);
}
// Copy out the bytes from the dma buffer
let len = self.copy_to(buf, self.first..end);
compiler_fence(Ordering::SeqCst);
if dma.tcif() {
// The dma controller has written such that the ring buffer now wraps
self.ndtr = dma.ndtr();
if self.end() > self.first {
// The bytes that we have copied out have overflowed
// as the writer has now both wrapped and is currently writing
// within the region that we have just copied out
// Clear transfer completed interrupt flag
dma.clear_tcif();
return Err(OverrunError);
}
}
self.first = (self.first + len) % self.dma_buf.len();
self.expect_next_read_to_wrap = false;
Ok(len)
} else {
// The available, unread portion in the ring buffer DOES wrap
// The dma controller has wrapped since we last read and is currently
// writing (or the next byte added will be) in the beginning of the ring buffer.
// If the unread portion wraps then the writer must also have wrapped,
// or it has wrapped and we already cleared the TCIF flag
assert!(dma.tcif() || self.expect_next_read_to_wrap);
// Clear transfer completed interrupt flag
dma.clear_tcif();
if self.first + buf.len() < self.dma_buf.len() {
// The provided read buffer is not large enough to include all bytes from the tail of the dma buffer.
// Copy out from the dma buffer
let len = self.copy_to(buf, self.first..self.dma_buf.len());
compiler_fence(Ordering::SeqCst);
// We have now copied out the data from dma_buf
// Make sure that the just read part was not overwritten during the copy
self.ndtr = dma.ndtr();
if self.end() > self.first || dma.tcif() {
// The writer has entered the data that we have just read since we read out `end` in the beginning and until now.
return Err(OverrunError);
}
self.first = (self.first + len) % self.dma_buf.len();
self.expect_next_read_to_wrap = true;
Ok(len)
} else {
// The provided read buffer is large enough to include all bytes from the tail of the dma buffer,
// so the next read will not have any unread tail bytes in the ring buffer.
// Copy out from the dma buffer
let tail = self.copy_to(buf, self.first..self.dma_buf.len());
let head = self.copy_to(&mut buf[tail..], 0..end);
compiler_fence(Ordering::SeqCst);
// We have now copied out the data from dma_buf
// Make sure that the just read part was not overwritten during the copy
self.ndtr = dma.ndtr();
if self.end() > self.first || dma.tcif() {
return Err(OverrunError);
}
self.first = head;
self.expect_next_read_to_wrap = false;
Ok(tail + head)
}
}
}
/// Copy from the dma buffer at `data_range` into `buf`
fn copy_to(&mut self, buf: &mut [W], data_range: Range<usize>) -> usize {
// Limit the number of bytes that can be copied
let length = usize::min(data_range.len(), buf.len());
// Copy from dma buffer into read buffer
// We need to do it like this instead of a simple copy_from_slice() because
// reading from a part of memory that may be simultaneously written to is unsafe
unsafe {
let dma_buf = self.dma_buf.as_ptr();
for i in 0..length {
buf[i] = core::ptr::read_volatile(dma_buf.offset((data_range.start + i) as isize));
}
}
length
}
}
#[cfg(test)]
mod tests {
use core::array;
use core::cell::RefCell;
use super::*;
struct TestCtrl {
next_ndtr: RefCell<Option<usize>>,
tcif: bool,
}
impl TestCtrl {
pub const fn new() -> Self {
Self {
next_ndtr: RefCell::new(None),
tcif: false,
}
}
pub fn set_next_ndtr(&mut self, ndtr: usize) {
self.next_ndtr.borrow_mut().replace(ndtr);
}
}
impl DmaCtrl for TestCtrl {
fn ndtr(&self) -> usize {
self.next_ndtr.borrow_mut().unwrap()
}
fn tcif(&self) -> bool {
self.tcif
}
fn clear_tcif(&mut self) {
self.tcif = false;
}
}
#[test]
fn empty() {
let mut dma_buf = [0u8; 16];
let ringbuf = DmaRingBuffer::new(&mut dma_buf);
assert!(ringbuf.is_empty());
assert_eq!(0, ringbuf.len());
}
#[test]
fn can_read() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.ndtr = 6;
assert!(!ringbuf.is_empty());
assert_eq!(10, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([0, 1], buf);
assert_eq!(8, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([2, 3], buf);
assert_eq!(6, ringbuf.len());
let mut buf = [0; 8];
assert_eq!(6, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([4, 5, 6, 7, 8, 9], buf[..6]);
assert_eq!(0, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(0, ringbuf.read(&mut ctrl, &mut buf).unwrap());
}
#[test]
fn can_read_with_wrap() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 12;
ringbuf.ndtr = 10;
// The dma controller has written 4 + 6 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(10);
assert!(!ringbuf.is_empty());
assert_eq!(6 + 4, ringbuf.len());
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([12, 13], buf);
assert_eq!(6 + 2, ringbuf.len());
let mut buf = [0; 4];
assert_eq!(4, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([14, 15, 0, 1], buf);
assert_eq!(4, ringbuf.len());
}
#[test]
fn can_read_when_dma_writer_is_wrapped_and_read_does_not_wrap() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 2;
ringbuf.ndtr = 6;
// The dma controller has written 6 + 2 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(14);
let mut buf = [0; 2];
assert_eq!(2, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([2, 3], buf);
assert_eq!(true, ctrl.tcif); // The interrupt flag IS NOT cleared
}
#[test]
fn can_read_when_dma_writer_is_wrapped_and_read_wraps() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 12;
ringbuf.ndtr = 10;
// The dma controller has written 6 + 2 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(14);
let mut buf = [0; 10];
assert_eq!(10, ringbuf.read(&mut ctrl, &mut buf).unwrap());
assert_eq!([12, 13, 14, 15, 0, 1, 2, 3, 4, 5], buf);
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
#[test]
fn cannot_read_when_dma_writer_wraps_with_same_ndtr() {
let mut dma_buf = [0u8; 16];
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 6;
ringbuf.ndtr = 10;
ctrl.set_next_ndtr(9);
assert!(ringbuf.is_empty()); // The ring buffer thinks that it is empty
// The dma controller has written exactly 16 bytes
ctrl.tcif = true;
let mut buf = [0; 2];
assert_eq!(Err(OverrunError), ringbuf.read(&mut ctrl, &mut buf));
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
#[test]
fn cannot_read_when_dma_writer_overwrites_during_not_wrapping_read() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 2;
ringbuf.ndtr = 6;
// The dma controller has written 6 + 3 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(13);
let mut buf = [0; 2];
assert_eq!(Err(OverrunError), ringbuf.read(&mut ctrl, &mut buf));
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
#[test]
fn cannot_read_when_dma_writer_overwrites_during_wrapping_read() {
let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
let mut ctrl = TestCtrl::new();
let mut ringbuf = DmaRingBuffer::new(&mut dma_buf);
ringbuf.first = 12;
ringbuf.ndtr = 10;
// The dma controller has written 6 + 13 bytes and has reloaded NDTR
ctrl.tcif = true;
ctrl.set_next_ndtr(3);
let mut buf = [0; 2];
assert_eq!(Err(OverrunError), ringbuf.read(&mut ctrl, &mut buf));
assert_eq!(false, ctrl.tcif); // The interrupt flag IS cleared
}
}

View File

@ -283,8 +283,8 @@ impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
let (sr, cr1, cr3) = unsafe { (sr(r).read(), r.cr1().read(), r.cr3().read()) }; let (sr, cr1, cr3) = unsafe { (sr(r).read(), r.cr1().read(), r.cr3().read()) };
let mut wake = false;
let has_errors = (sr.pe() && cr1.peie()) || ((sr.fe() || sr.ne() || sr.ore()) && cr3.eie()); let has_errors = (sr.pe() && cr1.peie()) || ((sr.fe() || sr.ne() || sr.ore()) && cr3.eie());
if has_errors { if has_errors {
// clear all interrupts and DMA Rx Request // clear all interrupts and DMA Rx Request
unsafe { unsafe {
@ -304,22 +304,35 @@ impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
}); });
} }
compiler_fence(Ordering::SeqCst); wake = true;
} else {
if cr1.idleie() && sr.idle() {
// IDLE detected: no more data will come
unsafe {
r.cr1().modify(|w| {
// disable idle line detection
w.set_idleie(false);
});
s.rx_waker.wake(); r.cr3().modify(|w| {
} else if cr1.idleie() && sr.idle() { // disable DMA Rx Request
// IDLE detected: no more data will come w.set_dmar(false);
unsafe { });
r.cr1().modify(|w| { }
// disable idle line detection
w.set_idleie(false);
});
r.cr3().modify(|w| { wake = true;
// disable DMA Rx Request
w.set_dmar(false);
});
} }
if cr1.rxneie() {
// We cannot check the RXNE flag as it is auto-cleared by the DMA controller
// It is up to the listener to determine if this in fact was a RX event and disable the RXNE detection
wake = true;
}
}
if wake {
compiler_fence(Ordering::SeqCst); compiler_fence(Ordering::SeqCst);
s.rx_waker.wake(); s.rx_waker.wake();
@ -972,6 +985,8 @@ mod eio {
pub use buffered::*; pub use buffered::*;
#[cfg(feature = "nightly")] #[cfg(feature = "nightly")]
mod buffered; mod buffered;
mod rx_ringbuffered;
pub use rx_ringbuffered::RingBufferedUartRx;
#[cfg(usart_v1)] #[cfg(usart_v1)]
fn tdr(r: crate::pac::usart::Usart) -> *mut u8 { fn tdr(r: crate::pac::usart::Usart) -> *mut u8 {

View File

@ -0,0 +1,286 @@
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::PeripheralRef;
use super::{rdr, sr, BasicInstance, Error, UartRx};
use crate::dma::ringbuffer::OverrunError;
use crate::dma::RingBuffer;
pub struct RingBufferedUartRx<'d, T: BasicInstance, RxDma: super::RxDma<T>> {
_peri: PeripheralRef<'d, T>,
ring_buf: RingBuffer<'d, RxDma, u8>,
}
impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> UartRx<'d, T, RxDma> {
/// Turn the `UartRx` into a buffered uart which can continously receive in the background
/// without the possibility of loosing bytes. The `dma_buf` is a buffer registered to the
/// DMA controller, and must be sufficiently large, such that it will not overflow.
pub fn into_ring_buffered(self, dma_buf: &'d mut [u8]) -> RingBufferedUartRx<'d, T, RxDma> {
assert!(dma_buf.len() > 0 && dma_buf.len() <= 0xFFFF);
let request = self.rx_dma.request();
let opts = Default::default();
let ring_buf = unsafe { RingBuffer::new_read(self.rx_dma, request, rdr(T::regs()), dma_buf, opts) };
RingBufferedUartRx {
_peri: self._peri,
ring_buf,
}
}
}
impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> RingBufferedUartRx<'d, T, RxDma> {
pub fn start(&mut self) -> Result<(), Error> {
// Clear the ring buffer so that it is ready to receive data
self.ring_buf.clear();
self.setup_uart();
Ok(())
}
/// Start uart background receive
fn setup_uart(&mut self) {
// fence before starting DMA.
compiler_fence(Ordering::SeqCst);
self.ring_buf.start();
let r = T::regs();
// clear all interrupts and DMA Rx Request
// SAFETY: only clears Rx related flags
unsafe {
r.cr1().modify(|w| {
// disable RXNE interrupt
w.set_rxneie(false);
// enable parity interrupt if not ParityNone
w.set_peie(w.pce());
// disable idle line interrupt
w.set_idleie(false);
});
r.cr3().modify(|w| {
// enable Error Interrupt: (Frame error, Noise error, Overrun error)
w.set_eie(true);
// enable DMA Rx Request
w.set_dmar(true);
});
}
}
/// Stop uart background receive
fn teardown_uart(&mut self) {
let r = T::regs();
// clear all interrupts and DMA Rx Request
// SAFETY: only clears Rx related flags
unsafe {
r.cr1().modify(|w| {
// disable RXNE interrupt
w.set_rxneie(false);
// disable parity interrupt
w.set_peie(false);
// disable idle line interrupt
w.set_idleie(false);
});
r.cr3().modify(|w| {
// disable Error Interrupt: (Frame error, Noise error, Overrun error)
w.set_eie(false);
// disable DMA Rx Request
w.set_dmar(false);
});
}
compiler_fence(Ordering::SeqCst);
self.ring_buf.request_stop();
while self.ring_buf.is_running() {}
}
/// Read bytes that are readily available in the ring buffer.
/// If no bytes are currently available in the buffer the call waits until data are received.
///
/// Background receive is started if `start()` has not been previously called.
///
/// Receive in the background is terminated if an error is returned.
/// It must then manually be started again by calling `start()` or by re-calling `read()`.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
let r = T::regs();
// SAFETY: read only
let is_started = unsafe { r.cr3().read().dmar() };
// Start background receive if it was not already started
if !is_started {
self.start()?;
}
// SAFETY: read only and we only use Rx related flags
let s = unsafe { sr(r).read() };
let has_errors = s.pe() || s.fe() || s.ne() || s.ore();
if has_errors {
self.teardown_uart();
if s.pe() {
return Err(Error::Parity);
} else if s.fe() {
return Err(Error::Framing);
} else if s.ne() {
return Err(Error::Noise);
} else {
return Err(Error::Overrun);
}
}
let ndtr = self.ring_buf.get_remaining_transfers();
self.ring_buf.set_ndtr(ndtr);
match self.ring_buf.read(buf) {
Ok(len) if len == 0 => {}
Ok(len) => {
assert!(len > 0);
return Ok(len);
}
Err(OverrunError) => {
// Stop any transfer from now on
// The user must re-start to receive any more data
self.teardown_uart();
return Err(Error::Overrun);
}
}
// Wait for any data since `ndtr`
self.wait_for_data(ndtr).await?;
// ndtr is now different than the value provided to `wait_for_data()`
// Re-sample ndtr now when it has changed.
self.ring_buf.set_ndtr(self.ring_buf.get_remaining_transfers());
let len = self.ring_buf.read(buf).map_err(|_err| Error::Overrun)?;
assert!(len > 0);
Ok(len)
}
/// Wait for uart data
async fn wait_for_data(&mut self, old_ndtr: usize) -> Result<(), Error> {
let r = T::regs();
// make sure USART state is restored to neutral state when this future is dropped
let _drop = OnDrop::new(move || {
// SAFETY: only clears Rx related flags
unsafe {
r.cr1().modify(|w| {
// disable RXNE interrupt
w.set_rxneie(false);
});
}
});
// SAFETY: only sets Rx related flags
unsafe {
r.cr1().modify(|w| {
// enable RXNE interrupt
w.set_rxneie(true);
});
}
// future which completes when RX "not empty" is detected,
// i.e. when there is data in uart rx register
let rxne = poll_fn(|cx| {
let s = T::state();
// Register waker to be awaken when RXNE interrupt is received
s.rx_waker.register(cx.waker());
compiler_fence(Ordering::SeqCst);
// SAFETY: read only and we only use Rx related flags
let s = unsafe { sr(r).read() };
let has_errors = s.pe() || s.fe() || s.ne() || s.ore();
if has_errors {
if s.pe() {
return Poll::Ready(Err(Error::Parity));
} else if s.fe() {
return Poll::Ready(Err(Error::Framing));
} else if s.ne() {
return Poll::Ready(Err(Error::Noise));
} else {
return Poll::Ready(Err(Error::Overrun));
}
}
// Re-sample ndtr and determine if it has changed since we started
// waiting for data.
let new_ndtr = self.ring_buf.get_remaining_transfers();
if new_ndtr != old_ndtr {
// Some data was received as NDTR has changed
Poll::Ready(Ok(()))
} else {
// It may be that the DMA controller is currently busy consuming the
// RX data register. We therefore wait register to become empty.
while unsafe { sr(r).read().rxne() } {}
compiler_fence(Ordering::SeqCst);
// Re-get again: This time we know that the DMA controller has consumed
// the current read register if it was busy doing so
let new_ndtr = self.ring_buf.get_remaining_transfers();
if new_ndtr != old_ndtr {
// Some data was received as NDTR has changed
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
});
compiler_fence(Ordering::SeqCst);
let new_ndtr = self.ring_buf.get_remaining_transfers();
if new_ndtr != old_ndtr {
// Fast path - NDTR has already changed, no reason to poll
Ok(())
} else {
// NDTR has not changed since we first read from the ring buffer
// Wait for RXNE interrupt...
match rxne.await {
Ok(()) => Ok(()),
Err(e) => {
self.teardown_uart();
Err(e)
}
}
}
}
}
impl<T: BasicInstance, RxDma: super::RxDma<T>> Drop for RingBufferedUartRx<'_, T, RxDma> {
fn drop(&mut self) {
self.teardown_uart();
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eio {
use embedded_io::asynch::Read;
use embedded_io::Io;
use super::RingBufferedUartRx;
use crate::usart::{BasicInstance, Error, RxDma};
impl<T, Rx> Io for RingBufferedUartRx<'_, T, Rx>
where
T: BasicInstance,
Rx: RxDma<T>,
{
type Error = Error;
}
impl<T, Rx> Read for RingBufferedUartRx<'_, T, Rx>
where
T: BasicInstance,
Rx: RxDma<T>,
{
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.read(buf).await
}
}
}

View File

@ -33,6 +33,8 @@ embedded-hal = "0.2.6"
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10" } embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10" }
embedded-hal-async = { version = "=0.2.0-alpha.1" } embedded-hal-async = { version = "=0.2.0-alpha.1" }
panic-probe = { version = "0.3.0", features = ["print-defmt"] } panic-probe = { version = "0.3.0", features = ["print-defmt"] }
rand_core = { version = "0.6", default-features = false }
rand_chacha = { version = "0.3", default-features = false }
chrono = { version = "^0.4", default-features = false, optional = true} chrono = { version = "^0.4", default-features = false, optional = true}

View File

@ -0,0 +1,188 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use embassy_executor::Spawner;
use embassy_stm32::interrupt;
use embassy_stm32::usart::{Config, DataBits, Parity, RingBufferedUartRx, StopBits, Uart, UartTx};
use embassy_time::{Duration, Timer};
use example_common::*;
use rand_chacha::ChaCha8Rng;
use rand_core::{RngCore, SeedableRng};
#[cfg(feature = "stm32f103c8")]
mod board {
pub type Uart = embassy_stm32::peripherals::USART1;
pub type TxDma = embassy_stm32::peripherals::DMA1_CH4;
pub type RxDma = embassy_stm32::peripherals::DMA1_CH5;
}
#[cfg(feature = "stm32g491re")]
mod board {
pub type Uart = embassy_stm32::peripherals::USART1;
pub type TxDma = embassy_stm32::peripherals::DMA1_CH1;
pub type RxDma = embassy_stm32::peripherals::DMA1_CH2;
}
#[cfg(feature = "stm32g071rb")]
mod board {
pub type Uart = embassy_stm32::peripherals::USART1;
pub type TxDma = embassy_stm32::peripherals::DMA1_CH1;
pub type RxDma = embassy_stm32::peripherals::DMA1_CH2;
}
#[cfg(feature = "stm32f429zi")]
mod board {
pub type Uart = embassy_stm32::peripherals::USART2;
pub type TxDma = embassy_stm32::peripherals::DMA1_CH6;
pub type RxDma = embassy_stm32::peripherals::DMA1_CH5;
}
#[cfg(feature = "stm32wb55rg")]
mod board {
pub type Uart = embassy_stm32::peripherals::LPUART1;
pub type TxDma = embassy_stm32::peripherals::DMA1_CH1;
pub type RxDma = embassy_stm32::peripherals::DMA1_CH2;
}
#[cfg(feature = "stm32h755zi")]
mod board {
pub type Uart = embassy_stm32::peripherals::USART1;
pub type TxDma = embassy_stm32::peripherals::DMA1_CH0;
pub type RxDma = embassy_stm32::peripherals::DMA1_CH1;
}
#[cfg(feature = "stm32u585ai")]
mod board {
pub type Uart = embassy_stm32::peripherals::USART3;
pub type TxDma = embassy_stm32::peripherals::GPDMA1_CH0;
pub type RxDma = embassy_stm32::peripherals::GPDMA1_CH1;
}
const ONE_BYTE_DURATION_US: u32 = 9_000_000 / 115200;
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_stm32::init(config());
info!("Hello World!");
// Arduino pins D0 and D1
// They're connected together with a 1K resistor.
#[cfg(feature = "stm32f103c8")]
let (tx, rx, usart, irq, tx_dma, rx_dma) = (
p.PA9,
p.PA10,
p.USART1,
interrupt::take!(USART1),
p.DMA1_CH4,
p.DMA1_CH5,
);
#[cfg(feature = "stm32g491re")]
let (tx, rx, usart, irq, tx_dma, rx_dma) =
(p.PC4, p.PC5, p.USART1, interrupt::take!(USART1), p.DMA1_CH1, p.DMA1_CH2);
#[cfg(feature = "stm32g071rb")]
let (tx, rx, usart, irq, tx_dma, rx_dma) =
(p.PC4, p.PC5, p.USART1, interrupt::take!(USART1), p.DMA1_CH1, p.DMA1_CH2);
#[cfg(feature = "stm32f429zi")]
let (tx, rx, usart, irq, tx_dma, rx_dma) =
(p.PA2, p.PA3, p.USART2, interrupt::take!(USART2), p.DMA1_CH6, p.DMA1_CH5);
#[cfg(feature = "stm32wb55rg")]
let (tx, rx, usart, irq, tx_dma, rx_dma) = (
p.PA2,
p.PA3,
p.LPUART1,
interrupt::take!(LPUART1),
p.DMA1_CH1,
p.DMA1_CH2,
);
#[cfg(feature = "stm32h755zi")]
let (tx, rx, usart, irq, tx_dma, rx_dma) =
(p.PB6, p.PB7, p.USART1, interrupt::take!(USART1), p.DMA1_CH0, p.DMA1_CH1);
#[cfg(feature = "stm32u585ai")]
let (tx, rx, usart, irq, tx_dma, rx_dma) = (
p.PD8,
p.PD9,
p.USART3,
interrupt::take!(USART3),
p.GPDMA1_CH0,
p.GPDMA1_CH1,
);
// To run this test, use the saturating_serial test utility to saturate the serial port
let mut config = Config::default();
config.baudrate = 115200;
config.data_bits = DataBits::DataBits8;
config.stop_bits = StopBits::STOP1;
config.parity = Parity::ParityNone;
let usart = Uart::new(usart, rx, tx, irq, tx_dma, rx_dma, config);
let (tx, rx) = usart.split();
static mut DMA_BUF: [u8; 64] = [0; 64];
let dma_buf = unsafe { DMA_BUF.as_mut() };
let rx = rx.into_ring_buffered(dma_buf);
info!("Spawning tasks");
spawner.spawn(transmit_task(tx)).unwrap();
spawner.spawn(receive_task(rx)).unwrap();
}
#[embassy_executor::task]
async fn transmit_task(mut tx: UartTx<'static, board::Uart, board::TxDma>) {
let mut rng = ChaCha8Rng::seed_from_u64(1337);
info!("Starting random transmissions into void...");
let mut i: u8 = 0;
loop {
let mut buf = [0; 32];
let len = 1 + (rng.next_u32() as usize % (buf.len() - 1));
for b in &mut buf[..len] {
*b = i;
i = i.wrapping_add(1);
}
tx.write(&buf[..len]).await.unwrap();
Timer::after(Duration::from_micros((rng.next_u32() % 10000) as _)).await;
//i += 1;
//if i % 1000 == 0 {
// trace!("Wrote {} times", i);
//}
}
}
#[embassy_executor::task]
async fn receive_task(mut rx: RingBufferedUartRx<'static, board::Uart, board::RxDma>) {
info!("Ready to receive...");
let mut rng = ChaCha8Rng::seed_from_u64(1337);
let mut i = 0;
let mut expected: Option<u8> = None;
loop {
let mut buf = [0; 100];
let max_len = 1 + (rng.next_u32() as usize % (buf.len() - 1));
let received = rx.read(&mut buf[..max_len]).await.unwrap();
if expected.is_none() {
info!("Test started");
expected = Some(buf[0]);
}
for byte in &buf[..received] {
if byte != &expected.unwrap() {
error!("Test fail! received {}, expected {}", *byte, expected.unwrap());
cortex_m::asm::bkpt();
return;
}
expected = Some(expected.unwrap().wrapping_add(1));
}
if received < max_len {
let byte_count = rng.next_u32() % 64;
Timer::after(Duration::from_micros((byte_count * ONE_BYTE_DURATION_US) as _)).await;
}
i += 1;
if i % 1000 == 0 {
trace!("Read {} times", i);
}
}
}

10
tests/utils/Cargo.toml Normal file
View File

@ -0,0 +1,10 @@
[package]
name = "test-utils"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
rand = "0.8"
serial = "0.4"

View File

@ -0,0 +1,52 @@
use std::path::Path;
use std::time::Duration;
use std::{env, io, thread};
use rand::random;
use serial::SerialPort;
pub fn main() {
if let Some(port_name) = env::args().nth(1) {
let sleep = env::args().position(|x| x == "--sleep").is_some();
println!("Saturating port {:?} with 115200 8N1", port_name);
println!("Sleep: {}", sleep);
let mut port = serial::open(&port_name).unwrap();
if saturate(&mut port, sleep).is_err() {
eprintln!("Unable to saturate port");
}
} else {
let path = env::args().next().unwrap();
let basepath = Path::new(&path).with_extension("");
let basename = basepath.file_name().unwrap();
eprintln!("USAGE: {} <port-name>", basename.to_string_lossy());
}
}
fn saturate<T: SerialPort>(port: &mut T, sleep: bool) -> io::Result<()> {
port.reconfigure(&|settings| {
settings.set_baud_rate(serial::Baud115200)?;
settings.set_char_size(serial::Bits8);
settings.set_parity(serial::ParityNone);
settings.set_stop_bits(serial::Stop1);
Ok(())
})?;
let mut written = 0;
loop {
let len = random::<usize>() % 0x1000;
let buf: Vec<u8> = (written..written + len).map(|x| x as u8).collect();
port.write_all(&buf)?;
if sleep {
let micros = (random::<usize>() % 1000) as u64;
println!("Sleeping {}us", micros);
port.flush().unwrap();
thread::sleep(Duration::from_micros(micros));
}
written += len;
println!("Written: {}", written);
}
}