Start working on the F4 PLL

This commit is contained in:
Thales Fragoso 2021-07-27 23:09:48 -03:00
parent 1ed65cb9e0
commit 5abaf8e9d6
2 changed files with 267 additions and 162 deletions

View File

@ -1,207 +1,309 @@
pub use super::types::*; use crate::pac::{FLASH, RCC};
use crate::pac; use crate::peripherals;
use crate::peripherals::{self, RCC};
use crate::rcc::{get_freqs, set_freqs, Clocks}; use crate::rcc::{get_freqs, set_freqs, Clocks};
use crate::time::Hertz; use crate::time::Hertz;
use crate::time::U32Ext;
use core::marker::PhantomData; use core::marker::PhantomData;
use embassy::util::Unborrow; use embassy::util::Unborrow;
use embassy_hal_common::unborrow;
use pac::rcc::vals::{Hpre, Ppre, Sw};
/// Most of clock setup is copied from stm32l0xx-hal, and adopted to the generated PAC, const HSI: u32 = 16_000_000;
/// and with the addition of the init function to configure a system clock.
/// Only the basic setup using the HSE and HSI clocks are supported as of now. // TODO: This is for the F401, find a way to make it compile time configurable
const SYSCLK_MIN: u32 = 24_000_000;
/// HSI speed const SYSCLK_MAX: u32 = 84_000_000;
pub const HSI_FREQ: u32 = 16_000_000; const PCLK2_MAX: u32 = SYSCLK_MAX;
const PCLK1_MAX: u32 = PCLK2_MAX / 2;
/// System clock mux source
#[derive(Clone, Copy)]
pub enum ClockSrc {
HSE(Hertz),
HSI16,
}
impl Into<Ppre> for APBPrescaler {
fn into(self) -> Ppre {
match self {
APBPrescaler::NotDivided => Ppre::DIV1,
APBPrescaler::Div2 => Ppre::DIV2,
APBPrescaler::Div4 => Ppre::DIV4,
APBPrescaler::Div8 => Ppre::DIV8,
APBPrescaler::Div16 => Ppre::DIV16,
}
}
}
impl Into<Hpre> for AHBPrescaler {
fn into(self) -> Hpre {
match self {
AHBPrescaler::NotDivided => Hpre::DIV1,
AHBPrescaler::Div2 => Hpre::DIV2,
AHBPrescaler::Div4 => Hpre::DIV4,
AHBPrescaler::Div8 => Hpre::DIV8,
AHBPrescaler::Div16 => Hpre::DIV16,
AHBPrescaler::Div64 => Hpre::DIV64,
AHBPrescaler::Div128 => Hpre::DIV128,
AHBPrescaler::Div256 => Hpre::DIV256,
AHBPrescaler::Div512 => Hpre::DIV512,
}
}
}
/// Clocks configutation /// Clocks configutation
#[non_exhaustive]
#[derive(Default)]
pub struct Config { pub struct Config {
mux: ClockSrc, pub hse: Option<Hertz>,
ahb_pre: AHBPrescaler, pub bypass_hse: bool,
apb1_pre: APBPrescaler, pub pll48: bool,
apb2_pre: APBPrescaler, pub sys_ck: Option<Hertz>,
} pub hclk: Option<Hertz>,
pub pclk1: Option<Hertz>,
impl Default for Config { pub pclk2: Option<Hertz>,
#[inline]
fn default() -> Config {
Config {
mux: ClockSrc::HSI16,
ahb_pre: AHBPrescaler::NotDivided,
apb1_pre: APBPrescaler::NotDivided,
apb2_pre: APBPrescaler::NotDivided,
}
}
}
impl Config {
#[inline]
pub fn clock_src(mut self, mux: ClockSrc) -> Self {
self.mux = mux;
self
}
#[inline]
pub fn ahb_pre(mut self, pre: AHBPrescaler) -> Self {
self.ahb_pre = pre;
self
}
#[inline]
pub fn apb1_pre(mut self, pre: APBPrescaler) -> Self {
self.apb1_pre = pre;
self
}
#[inline]
pub fn apb2_pre(mut self, pre: APBPrescaler) -> Self {
self.apb2_pre = pre;
self
}
} }
/// RCC peripheral /// RCC peripheral
pub struct Rcc<'d> { pub struct Rcc<'d> {
_rb: peripherals::RCC, config: Config,
phantom: PhantomData<&'d mut peripherals::RCC>, phantom: PhantomData<&'d mut peripherals::RCC>,
} }
impl<'d> Rcc<'d> { impl<'d> Rcc<'d> {
pub fn new(rcc: impl Unborrow<Target = peripherals::RCC> + 'd) -> Self { pub fn new(_rcc: impl Unborrow<Target = peripherals::RCC> + 'd, config: Config) -> Self {
unborrow!(rcc);
Self { Self {
_rb: rcc, config,
phantom: PhantomData, phantom: PhantomData,
} }
} }
fn freeze(mut self) -> Clocks {
use crate::pac::rcc::vals::{Hpre, Hsebyp, Ppre, Sw};
let pllsrcclk = self.config.hse.map(|hse| hse.0).unwrap_or(HSI);
let sysclk = self.config.sys_ck.map(|sys| sys.0).unwrap_or(pllsrcclk);
let sysclk_on_pll = sysclk != pllsrcclk;
let plls = self.setup_pll(
pllsrcclk,
self.config.hse.is_some(),
if sysclk_on_pll { Some(sysclk) } else { None },
self.config.pll48,
);
if self.config.pll48 {
assert!(
// USB specification allows +-0.25%
plls.pll48clk
.map(|freq| (48_000_000 - freq as i32).abs() <= 120_000)
.unwrap_or(false)
);
}
let sysclk = if sysclk_on_pll {
plls.pllsysclk.unwrap()
} else {
sysclk
};
assert!((SYSCLK_MIN..=SYSCLK_MAX).contains(&sysclk));
let hclk = self.config.hclk.map(|h| h.0).unwrap_or(sysclk);
let (hpre_bits, hpre_div) = match (sysclk + hclk - 1) / hclk {
0 => unreachable!(),
1 => (Hpre::DIV1, 1),
2 => (Hpre::DIV2, 2),
3..=5 => (Hpre::DIV4, 4),
6..=11 => (Hpre::DIV8, 8),
12..=39 => (Hpre::DIV16, 16),
40..=95 => (Hpre::DIV64, 64),
96..=191 => (Hpre::DIV128, 128),
192..=383 => (Hpre::DIV256, 256),
_ => (Hpre::DIV512, 512),
};
// Calculate real AHB clock
let hclk = sysclk / hpre_div;
let pclk1 = self
.config
.pclk1
.map(|p| p.0)
.unwrap_or_else(|| core::cmp::min(PCLK1_MAX, hclk));
let (ppre1_bits, ppre1) = match (hclk + pclk1 - 1) / pclk1 {
0 => unreachable!(),
1 => (0b000, 1),
2 => (0b100, 2),
3..=5 => (0b101, 4),
6..=11 => (0b110, 8),
_ => (0b111, 16),
};
let timer_mul1 = if ppre1 == 1 { 1 } else { 2 };
// Calculate real APB1 clock
let pclk1 = hclk / ppre1;
assert!(pclk1 <= PCLK1_MAX);
let pclk2 = self
.config
.pclk2
.map(|p| p.0)
.unwrap_or_else(|| core::cmp::min(PCLK2_MAX, hclk));
let (ppre2_bits, ppre2) = match (hclk + pclk2 - 1) / pclk2 {
0 => unreachable!(),
1 => (0b000, 1),
2 => (0b100, 2),
3..=5 => (0b101, 4),
6..=11 => (0b110, 8),
_ => (0b111, 16),
};
let timer_mul2 = if ppre2 == 1 { 1 } else { 2 };
// Calculate real APB2 clock
let pclk2 = hclk / ppre2;
assert!(pclk2 <= PCLK2_MAX);
Self::flash_setup(sysclk);
if self.config.hse.is_some() {
// NOTE(unsafe) We own the peripheral block
unsafe {
RCC.cr().modify(|w| {
w.set_hsebyp(Hsebyp(self.config.bypass_hse as u8));
w.set_hseon(true);
});
while !RCC.cr().read().hserdy() {}
}
}
if plls.use_pll {
unsafe {
RCC.cr().modify(|w| w.set_pllon(true));
// TODO: PWR setup for HCLK > 168MHz
while !RCC.cr().read().pllrdy() {}
}
}
unsafe {
RCC.cfgr().modify(|w| {
w.set_ppre2(Ppre(ppre2_bits));
w.set_ppre1(Ppre(ppre1_bits));
w.set_hpre(hpre_bits);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
RCC.cfgr().modify(|w| {
w.set_sw(if sysclk_on_pll {
Sw::PLL
} else if self.config.hse.is_some() {
Sw::HSE
} else {
Sw::HSI
})
});
}
Clocks {
sys: Hertz(sysclk),
apb1: Hertz(pclk1),
apb2: Hertz(pclk2),
apb1_tim: Hertz(pclk1 * timer_mul1),
apb2_tim: Hertz(pclk2 * timer_mul2),
ahb1: Hertz(hclk),
ahb2: Hertz(hclk),
ahb3: Hertz(hclk),
pll48: plls.pll48clk.map(Hertz),
}
}
// Safety: RCC init must have been called // Safety: RCC init must have been called
pub fn clocks(&self) -> &'static Clocks { pub fn clocks(&self) -> &'static Clocks {
unsafe { get_freqs() } unsafe { get_freqs() }
} }
}
/// Extension trait that freezes the `RCC` peripheral with provided clocks configuration fn setup_pll(
pub trait RccExt { &mut self,
fn freeze(self, config: Config) -> Clocks; pllsrcclk: u32,
} use_hse: bool,
pllsysclk: Option<u32>,
pll48clk: bool,
) -> PllResults {
use crate::pac::rcc::vals::{Pllp, Pllsrc};
impl RccExt for RCC { let sysclk = pllsysclk.unwrap_or(pllsrcclk);
#[inline] if pllsysclk.is_none() && !pll48clk {
fn freeze(self, cfgr: Config) -> Clocks { // NOTE(unsafe) We have a mutable borrow to the owner of the RegBlock
let rcc = pac::RCC;
let (sys_clk, sw) = match cfgr.mux {
ClockSrc::HSI16 => {
// Enable HSI16
unsafe { unsafe {
rcc.cr().modify(|w| w.set_hsion(true)); RCC.pllcfgr()
while !rcc.cr().read().hsirdy() {} .modify(|w| w.set_pllsrc(Pllsrc(use_hse as u8)));
} }
(HSI_FREQ, Sw::HSI) return PllResults {
} use_pll: false,
ClockSrc::HSE(freq) => { pllsysclk: None,
// Enable HSE pll48clk: None,
unsafe { };
rcc.cr().modify(|w| w.set_hseon(true));
while !rcc.cr().read().hserdy() {}
} }
// Input divisor from PLL source clock, must result to frequency in
// the range from 1 to 2 MHz
let pllm_min = (pllsrcclk + 1_999_999) / 2_000_000;
let pllm_max = pllsrcclk / 1_000_000;
(freq.0, Sw::HSE) // Sysclk output divisor must be one of 2, 4, 6 or 8
} let sysclk_div = core::cmp::min(8, (432_000_000 / sysclk) & !1);
let target_freq = if pll48clk {
48_000_000
} else {
sysclk * sysclk_div
}; };
// Find the lowest pllm value that minimize the difference between
// target frequency and the real vco_out frequency.
let pllm = (pllm_min..=pllm_max)
.min_by_key(|pllm| {
let vco_in = pllsrcclk / pllm;
let plln = target_freq / vco_in;
target_freq - vco_in * plln
})
.unwrap();
let vco_in = pllsrcclk / pllm;
assert!((1_000_000..=2_000_000).contains(&vco_in));
// Main scaler, must result in >= 100MHz (>= 192MHz for F401)
// and <= 432MHz, min 50, max 432
let plln = if pll48clk {
// try the different valid pllq according to the valid
// main scaller values, and take the best
let pllq = (4..=9)
.min_by_key(|pllq| {
let plln = 48_000_000 * pllq / vco_in;
let pll48_diff = 48_000_000 - vco_in * plln / pllq;
let sysclk_diff = (sysclk as i32 - (vco_in * plln / sysclk_div) as i32).abs();
(pll48_diff, sysclk_diff)
})
.unwrap();
48_000_000 * pllq / vco_in
} else {
sysclk * sysclk_div / vco_in
};
assert!((192_000_000..=432_000_000).contains(&(vco_in * plln)));
let pllp = (sysclk_div / 2) - 1;
let pllq = (vco_in * plln + 47_999_999) / 48_000_000;
let real_pll48clk = vco_in * plln / pllq;
unsafe { unsafe {
rcc.cfgr().modify(|w| { RCC.pllcfgr().modify(|w| {
w.set_sw(sw.into()); w.set_pllm(pllm as u8);
w.set_hpre(cfgr.ahb_pre.into()); w.set_plln(plln as u16);
w.set_ppre1(cfgr.apb1_pre.into()); w.set_pllp(Pllp(pllp as u8));
w.set_ppre2(cfgr.apb2_pre.into()); w.set_pllq(pllq as u8);
w.set_pllsrc(Pllsrc(use_hse as u8));
}); });
} }
let ahb_freq: u32 = match cfgr.ahb_pre { let real_pllsysclk = vco_in * plln / sysclk_div;
AHBPrescaler::NotDivided => sys_clk,
pre => {
let pre: Hpre = pre.into();
let pre = 1 << (pre.0 as u32 - 7);
sys_clk / pre
}
};
let (apb1_freq, apb1_tim_freq) = match cfgr.apb1_pre { PllResults {
APBPrescaler::NotDivided => (ahb_freq, ahb_freq), use_pll: true,
pre => { pllsysclk: Some(real_pllsysclk),
let pre: Ppre = pre.into(); pll48clk: if pll48clk { Some(real_pll48clk) } else { None },
let pre: u8 = 1 << (pre.0 - 3); }
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
} }
};
let (apb2_freq, apb2_tim_freq) = match cfgr.apb2_pre { fn flash_setup(sysclk: u32) {
APBPrescaler::NotDivided => (ahb_freq, ahb_freq), use crate::pac::flash::vals::Latency;
pre => {
let pre: Ppre = pre.into();
let pre: u8 = 1 << (pre.0 - 3);
let freq = ahb_freq / (1 << (pre as u8 - 3));
(freq, freq * 2)
}
};
Clocks { // Be conservative with voltage ranges
sys: sys_clk.hz(), const FLASH_LATENCY_STEP: u32 = 30_000_000;
ahb1: ahb_freq.hz(),
ahb2: ahb_freq.hz(), critical_section::with(|_| unsafe {
ahb3: ahb_freq.hz(), FLASH
apb1: apb1_freq.hz(), .acr()
apb2: apb2_freq.hz(), .modify(|w| w.set_latency(Latency(((sysclk - 1) / FLASH_LATENCY_STEP) as u8)));
apb1_tim: apb1_tim_freq.hz(), });
apb2_tim: apb2_tim_freq.hz(),
}
} }
} }
pub unsafe fn init(config: Config) { pub unsafe fn init(config: Config) {
let r = <peripherals::RCC as embassy::util::Steal>::steal(); let r = <peripherals::RCC as embassy::util::Steal>::steal();
let clocks = r.freeze(config); let clocks = Rcc::new(r, config).freeze();
set_freqs(clocks); set_freqs(clocks);
} }
struct PllResults {
use_pll: bool,
pllsysclk: Option<u32>,
pll48clk: Option<u32>,
}

View File

@ -31,6 +31,9 @@ pub struct Clocks {
#[cfg(any(rcc_h7))] #[cfg(any(rcc_h7))]
pub apb4: Hertz, pub apb4: Hertz,
#[cfg(rcc_f4)]
pub pll48: Option<Hertz>,
} }
/// Frozen clock frequencies /// Frozen clock frequencies