985: Create Sx126X LORA driver r=lulf a=ceekdee

Implementation features:

- update embassy-lora to support Semtech SX126X chips, specifically the RAK4631 chip (nrf52480 and sx1262).

- support additional SX126X packages by adding a feature (reference feature rak4631) and updating the board specific Rust file.  To enable feature rak4631, settings.json must currently enable "rust-analyzer.linkedProjects" for "examples/nrf/Cargo.toml".

- provide tx/rx examples in examples/nrf to show compatibility with the interface provided by the SX127X LORA implementation.

Only LORA P2P communication has been tested.  Implementation lines marked with ??? indicate areas for further investigation.  Furthermore, I question whether the DIO1 handler is adequate for catching all interrupt sequences.

This implementation is patterned after the C/C++ implementation provided by Semtech, available through the RAK-nRF52-RUI developers platform.

Co-authored-by: ceekdee <taigatensor@gmail.com>
Co-authored-by: Chuck Davis <91165799+ceekdee@users.noreply.github.com>
This commit is contained in:
bors[bot] 2022-10-11 08:48:55 +00:00 committed by GitHub
commit 83fcc360fe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 2498 additions and 2 deletions

View File

@ -31,7 +31,7 @@ The <a href="https://docs.embassy.dev/embassy-net/">embassy-net</a> network stac
The <a href="https://github.com/embassy-rs/nrf-softdevice">nrf-softdevice</a> crate provides Bluetooth Low Energy 4.x and 5.x support for nRF52 microcontrollers.
- **LoRa** -
<a href="https://docs.embassy.dev/embassy-lora/">embassy-lora</a> supports LoRa networking on STM32WL wireless microcontrollers and Semtech SX127x transceivers.
<a href="https://docs.embassy.dev/embassy-lora/">embassy-lora</a> supports LoRa networking on STM32WL wireless microcontrollers and Semtech SX126x and SX127x transceivers.
- **USB** -
<a href="https://docs.embassy.dev/embassy-usb/">embassy-usb</a> implements a device-side USB stack. Implementations for common classes such as USB serial (CDC ACM) and USB HID are available, and a rich builder API allows building your own.

View File

@ -9,6 +9,7 @@ src_base = "https://github.com/embassy-rs/embassy/blob/embassy-lora-v$VERSION/em
src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-lora/src/"
features = ["time", "defmt"]
flavors = [
{ name = "sx126x", target = "thumbv7em-none-eabihf", features = ["sx126x"] },
{ name = "sx127x", target = "thumbv7em-none-eabihf", features = ["sx127x", "embassy-stm32/stm32wl55jc-cm4", "embassy-stm32/time-driver-any"] },
{ name = "stm32wl", target = "thumbv7em-none-eabihf", features = ["stm32wl", "embassy-stm32/stm32wl55jc-cm4", "embassy-stm32/time-driver-any"] },
]
@ -16,6 +17,7 @@ flavors = [
[lib]
[features]
sx126x = []
sx127x = []
stm32wl = ["embassy-stm32", "embassy-stm32/subghz"]
time = []

View File

@ -7,6 +7,8 @@ pub(crate) mod fmt;
#[cfg(feature = "stm32wl")]
pub mod stm32wl;
#[cfg(feature = "sx126x")]
pub mod sx126x;
#[cfg(feature = "sx127x")]
pub mod sx127x;

View File

@ -0,0 +1,153 @@
use core::future::Future;
use defmt::Format;
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::*;
use lorawan_device::async_device::radio::{PhyRxTx, RfConfig, RxQuality, TxConfig};
use lorawan_device::async_device::Timings;
mod sx126x_lora;
use sx126x_lora::LoRa;
use self::sx126x_lora::mod_params::RadioError;
/// Semtech Sx126x LoRa peripheral
pub struct Sx126xRadio<SPI, CTRL, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CTRL: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
pub lora: LoRa<SPI, CTRL, WAIT>,
}
impl<SPI, CTRL, WAIT, BUS> Sx126xRadio<SPI, CTRL, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CTRL: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
pub async fn new(
spi: SPI,
cs: CTRL,
reset: CTRL,
antenna_rx: CTRL,
antenna_tx: CTRL,
dio1: WAIT,
busy: WAIT,
enable_public_network: bool,
) -> Result<Self, RadioError<BUS>> {
let mut lora = LoRa::new(spi, cs, reset, antenna_rx, antenna_tx, dio1, busy);
lora.init().await?;
lora.set_lora_modem(enable_public_network).await?;
Ok(Self { lora })
}
}
impl<SPI, CTRL, WAIT, BUS> Timings for Sx126xRadio<SPI, CTRL, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CTRL: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
fn get_rx_window_offset_ms(&self) -> i32 {
-500
}
fn get_rx_window_duration_ms(&self) -> u32 {
800
}
}
impl<SPI, CTRL, WAIT, BUS> PhyRxTx for Sx126xRadio<SPI, CTRL, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CTRL: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
type PhyError = RadioError<BUS>;
type TxFuture<'m> = impl Future<Output = Result<u32, Self::PhyError>> + 'm
where
SPI: 'm,
CTRL: 'm,
WAIT: 'm,
BUS: 'm;
fn tx<'m>(&'m mut self, config: TxConfig, buffer: &'m [u8]) -> Self::TxFuture<'m> {
trace!("TX START");
async move {
self.lora
.set_tx_config(
config.pw,
config.rf.spreading_factor.into(),
config.rf.bandwidth.into(),
config.rf.coding_rate.into(),
4,
false,
true,
false,
0,
false,
)
.await?;
self.lora.set_max_payload_length(buffer.len() as u8).await?;
self.lora.set_channel(config.rf.frequency).await?;
self.lora.send(buffer, 0xffffff).await?;
self.lora.process_irq(None, None, None).await?;
trace!("TX DONE");
return Ok(0);
}
}
type RxFuture<'m> = impl Future<Output = Result<(usize, RxQuality), Self::PhyError>> + 'm
where
SPI: 'm,
CTRL: 'm,
WAIT: 'm,
BUS: 'm;
fn rx<'m>(&'m mut self, config: RfConfig, receiving_buffer: &'m mut [u8]) -> Self::RxFuture<'m> {
trace!("RX START");
async move {
self.lora
.set_rx_config(
config.spreading_factor.into(),
config.bandwidth.into(),
config.coding_rate.into(),
4,
4,
false,
0u8,
true,
false,
0,
false,
true,
)
.await?;
self.lora.set_max_payload_length(receiving_buffer.len() as u8).await?;
self.lora.set_channel(config.frequency).await?;
self.lora.rx(90 * 1000).await?;
let mut received_len = 0u8;
self.lora
.process_irq(Some(receiving_buffer), Some(&mut received_len), None)
.await?;
trace!("RX DONE");
let packet_status = self.lora.get_latest_packet_status();
let mut rssi = 0i16;
let mut snr = 0i8;
if packet_status.is_some() {
rssi = packet_status.unwrap().rssi as i16;
snr = packet_status.unwrap().snr;
}
Ok((received_len as usize, RxQuality::new(rssi, snr)))
}
}
}

View File

@ -0,0 +1,256 @@
use embassy_time::{Duration, Timer};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;
use super::mod_params::RadioError::*;
use super::mod_params::*;
use super::LoRa;
// Defines the time required for the TCXO to wakeup [ms].
const BRD_TCXO_WAKEUP_TIME: u32 = 10;
// Provides board-specific functionality for Semtech SX126x-based boards.
impl<SPI, CTRL, WAIT, BUS> LoRa<SPI, CTRL, WAIT>
where
SPI: SpiBus<u8, Error = BUS>,
CTRL: OutputPin,
WAIT: Wait,
{
// De-initialize the radio I/Os pins interface. Useful when going into MCU low power modes.
pub(super) async fn brd_io_deinit(&mut self) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Initialize the TCXO power pin
pub(super) async fn brd_io_tcxo_init(&mut self) -> Result<(), RadioError<BUS>> {
let timeout = self.brd_get_board_tcxo_wakeup_time() << 6;
self.sub_set_dio3_as_tcxo_ctrl(TcxoCtrlVoltage::Ctrl1V7, timeout)
.await?;
Ok(())
}
// Initialize RF switch control pins
pub(super) async fn brd_io_rf_switch_init(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_dio2_as_rf_switch_ctrl(true).await?;
Ok(())
}
// Initialize the radio debug pins
pub(super) async fn brd_io_dbg_init(&mut self) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Hardware reset of the radio
pub(super) async fn brd_reset(&mut self) -> Result<(), RadioError<BUS>> {
Timer::after(Duration::from_millis(10)).await;
self.reset.set_low().map_err(|_| Reset)?;
Timer::after(Duration::from_millis(20)).await;
self.reset.set_high().map_err(|_| Reset)?;
Timer::after(Duration::from_millis(10)).await;
Ok(())
}
// Wait while the busy pin is high
pub(super) async fn brd_wait_on_busy(&mut self) -> Result<(), RadioError<BUS>> {
self.busy.wait_for_low().await.map_err(|_| Busy)?;
Ok(())
}
// Wake up the radio
pub(super) async fn brd_wakeup(&mut self) -> Result<(), RadioError<BUS>> {
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::GetStatus.value()]).await.map_err(SPI)?;
self.spi.write(&[0x00]).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
self.brd_set_operating_mode(RadioMode::StandbyRC);
Ok(())
}
// Send a command that writes data to the radio
pub(super) async fn brd_write_command(&mut self, op_code: OpCode, buffer: &[u8]) -> Result<(), RadioError<BUS>> {
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[op_code.value()]).await.map_err(SPI)?;
self.spi.write(buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
if op_code != OpCode::SetSleep {
self.brd_wait_on_busy().await?;
}
Ok(())
}
// Send a command that reads data from the radio, filling the provided buffer and returning a status
pub(super) async fn brd_read_command(&mut self, op_code: OpCode, buffer: &mut [u8]) -> Result<u8, RadioError<BUS>> {
let mut status = [0u8];
let mut input = [0u8];
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[op_code.value()]).await.map_err(SPI)?;
self.spi.transfer(&mut status, &[0x00]).await.map_err(SPI)?;
for i in 0..buffer.len() {
self.spi.transfer(&mut input, &[0x00]).await.map_err(SPI)?;
buffer[i] = input[0];
}
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(status[0])
}
// Write one or more bytes of data to the radio memory
pub(super) async fn brd_write_registers(
&mut self,
start_register: Register,
buffer: &[u8],
) -> Result<(), RadioError<BUS>> {
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::WriteRegister.value()]).await.map_err(SPI)?;
self.spi
.write(&[
((start_register.addr() & 0xFF00) >> 8) as u8,
(start_register.addr() & 0x00FF) as u8,
])
.await
.map_err(SPI)?;
self.spi.write(buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Read one or more bytes of data from the radio memory
pub(super) async fn brd_read_registers(
&mut self,
start_register: Register,
buffer: &mut [u8],
) -> Result<(), RadioError<BUS>> {
let mut input = [0u8];
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::ReadRegister.value()]).await.map_err(SPI)?;
self.spi
.write(&[
((start_register.addr() & 0xFF00) >> 8) as u8,
(start_register.addr() & 0x00FF) as u8,
0x00u8,
])
.await
.map_err(SPI)?;
for i in 0..buffer.len() {
self.spi.transfer(&mut input, &[0x00]).await.map_err(SPI)?;
buffer[i] = input[0];
}
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Write data to the buffer holding the payload in the radio
pub(super) async fn brd_write_buffer(&mut self, offset: u8, buffer: &[u8]) -> Result<(), RadioError<BUS>> {
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::WriteBuffer.value()]).await.map_err(SPI)?;
self.spi.write(&[offset]).await.map_err(SPI)?;
self.spi.write(buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Read data from the buffer holding the payload in the radio
pub(super) async fn brd_read_buffer(&mut self, offset: u8, buffer: &mut [u8]) -> Result<(), RadioError<BUS>> {
let mut input = [0u8];
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::ReadBuffer.value()]).await.map_err(SPI)?;
self.spi.write(&[offset]).await.map_err(SPI)?;
self.spi.write(&[0x00]).await.map_err(SPI)?;
for i in 0..buffer.len() {
self.spi.transfer(&mut input, &[0x00]).await.map_err(SPI)?;
buffer[i] = input[0];
}
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Set the radio output power
pub(super) async fn brd_set_rf_tx_power(&mut self, power: i8) -> Result<(), RadioError<BUS>> {
self.sub_set_tx_params(power, RampTime::Ramp40Us).await?;
Ok(())
}
// Get the radio type
pub(super) fn brd_get_radio_type(&mut self) -> RadioType {
RadioType::SX1262
}
// Quiesce the antenna(s).
pub(super) fn brd_ant_sleep(&mut self) -> Result<(), RadioError<BUS>> {
self.antenna_tx.set_low().map_err(|_| AntTx)?;
self.antenna_rx.set_low().map_err(|_| AntRx)?;
Ok(())
}
// Prepare the antenna(s) for a receive operation
pub(super) fn brd_ant_set_rx(&mut self) -> Result<(), RadioError<BUS>> {
self.antenna_tx.set_low().map_err(|_| AntTx)?;
self.antenna_rx.set_high().map_err(|_| AntRx)?;
Ok(())
}
// Prepare the antenna(s) for a send operation
pub(super) fn brd_ant_set_tx(&mut self) -> Result<(), RadioError<BUS>> {
self.antenna_rx.set_low().map_err(|_| AntRx)?;
self.antenna_tx.set_high().map_err(|_| AntTx)?;
Ok(())
}
// Check if the given RF frequency is supported by the hardware
pub(super) async fn brd_check_rf_frequency(&mut self, _frequency: u32) -> Result<bool, RadioError<BUS>> {
Ok(true)
}
// Get the duration required for the TCXO to wakeup [ms].
pub(super) fn brd_get_board_tcxo_wakeup_time(&mut self) -> u32 {
BRD_TCXO_WAKEUP_TIME
}
/* Get current state of the DIO1 pin - not currently needed if waiting on DIO1 instead of using an IRQ process
pub(super) async fn brd_get_dio1_pin_state(
&mut self,
) -> Result<u32, RadioError<BUS>> {
Ok(0)
}
*/
// Get the current radio operatiing mode
pub(super) fn brd_get_operating_mode(&mut self) -> RadioMode {
self.operating_mode
}
// Set/Update the current radio operating mode This function is only required to reflect the current radio operating mode when processing interrupts.
pub(super) fn brd_set_operating_mode(&mut self, mode: RadioMode) {
self.operating_mode = mode;
}
}

View File

@ -0,0 +1,732 @@
#![allow(dead_code)]
use embassy_time::{Duration, Timer};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;
mod board_specific;
pub mod mod_params;
mod subroutine;
use mod_params::RadioError::*;
use mod_params::*;
// Syncwords for public and private networks
const LORA_MAC_PUBLIC_SYNCWORD: u16 = 0x3444;
const LORA_MAC_PRIVATE_SYNCWORD: u16 = 0x1424;
// Maximum number of registers that can be added to the retention list
const MAX_NUMBER_REGS_IN_RETENTION: u8 = 4;
// Possible LoRa bandwidths
const LORA_BANDWIDTHS: [Bandwidth; 3] = [Bandwidth::_125KHz, Bandwidth::_250KHz, Bandwidth::_500KHz];
// Radio complete wakeup time with margin for temperature compensation [ms]
const RADIO_WAKEUP_TIME: u32 = 3;
/// Provides high-level access to Semtech SX126x-based boards
pub struct LoRa<SPI, CTRL, WAIT> {
spi: SPI,
cs: CTRL,
reset: CTRL,
antenna_rx: CTRL,
antenna_tx: CTRL,
dio1: WAIT,
busy: WAIT,
operating_mode: RadioMode,
rx_continuous: bool,
max_payload_length: u8,
modulation_params: Option<ModulationParams>,
packet_type: PacketType,
packet_params: Option<PacketParams>,
packet_status: Option<PacketStatus>,
image_calibrated: bool,
frequency_error: u32,
}
impl<SPI, CTRL, WAIT, BUS> LoRa<SPI, CTRL, WAIT>
where
SPI: SpiBus<u8, Error = BUS>,
CTRL: OutputPin,
WAIT: Wait,
{
/// Builds and returns a new instance of the radio. Only one instance of the radio should exist at a time ()
pub fn new(spi: SPI, cs: CTRL, reset: CTRL, antenna_rx: CTRL, antenna_tx: CTRL, dio1: WAIT, busy: WAIT) -> Self {
Self {
spi,
cs,
reset,
antenna_rx,
antenna_tx,
dio1,
busy,
operating_mode: RadioMode::Sleep,
rx_continuous: false,
max_payload_length: 0xFFu8,
modulation_params: None,
packet_type: PacketType::LoRa,
packet_params: None,
packet_status: None,
image_calibrated: false,
frequency_error: 0u32, // where is volatile FrequencyError modified ???
}
}
/// Initialize the radio
pub async fn init(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_init().await?;
self.sub_set_standby(StandbyMode::RC).await?;
self.sub_set_regulator_mode(RegulatorMode::UseDCDC).await?;
self.sub_set_buffer_base_address(0x00u8, 0x00u8).await?;
self.sub_set_tx_params(0i8, RampTime::Ramp200Us).await?;
self.sub_set_dio_irq_params(
IrqMask::All.value(),
IrqMask::All.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
self.add_register_to_retention_list(Register::RxGain.addr()).await?;
self.add_register_to_retention_list(Register::TxModulation.addr())
.await?;
Ok(())
}
/// Return current radio state
pub fn get_status(&mut self) -> RadioState {
match self.brd_get_operating_mode() {
RadioMode::Transmit => RadioState::TxRunning,
RadioMode::Receive => RadioState::RxRunning,
RadioMode::ChannelActivityDetection => RadioState::ChannelActivityDetecting,
_ => RadioState::Idle,
}
}
/// Configure the radio for LoRa (FSK support should be provided in a separate driver, if desired)
pub async fn set_lora_modem(&mut self, enable_public_network: bool) -> Result<(), RadioError<BUS>> {
self.sub_set_packet_type(PacketType::LoRa).await?;
if enable_public_network {
self.brd_write_registers(
Register::LoRaSyncword,
&[
((LORA_MAC_PUBLIC_SYNCWORD >> 8) & 0xFF) as u8,
(LORA_MAC_PUBLIC_SYNCWORD & 0xFF) as u8,
],
)
.await?;
} else {
self.brd_write_registers(
Register::LoRaSyncword,
&[
((LORA_MAC_PRIVATE_SYNCWORD >> 8) & 0xFF) as u8,
(LORA_MAC_PRIVATE_SYNCWORD & 0xFF) as u8,
],
)
.await?;
}
Ok(())
}
/// Sets the channel frequency
pub async fn set_channel(&mut self, frequency: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_rf_frequency(frequency).await?;
Ok(())
}
/* Checks if the channel is free for the given time. This is currently not implemented until a substitute
for switching to the FSK modem is found.
pub async fn is_channel_free(&mut self, frequency: u32, rxBandwidth: u32, rssiThresh: i16, maxCarrierSenseTime: u32) -> bool;
*/
/// Generate a 32 bit random value based on the RSSI readings, after disabling all interrupts. Ensure set_lora_modem() is called befrorehand.
/// After calling this function either set_rx_config() or set_tx_config() must be called.
pub async fn get_random_value(&mut self) -> Result<u32, RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::None.value(),
IrqMask::None.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
let result = self.sub_get_random().await?;
Ok(result)
}
/// Set the reception parameters for the LoRa modem (only). Ensure set_lora_modem() is called befrorehand.
/// spreading_factor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips/symbol]
/// bandwidth [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
/// coding_rate [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
/// preamble_length length in symbols (the hardware adds 4 more symbols)
/// symb_timeout RxSingle timeout value in symbols
/// fixed_len fixed length packets [0: variable, 1: fixed]
/// payload_len payload length when fixed length is used
/// crc_on [0: OFF, 1: ON]
/// freq_hop_on intra-packet frequency hopping [0: OFF, 1: ON]
/// hop_period number of symbols between each hop
/// iq_inverted invert IQ signals [0: not inverted, 1: inverted]
/// rx_continuous reception mode [false: single mode, true: continuous mode]
pub async fn set_rx_config(
&mut self,
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
symb_timeout: u16,
fixed_len: bool,
payload_len: u8,
crc_on: bool,
_freq_hop_on: bool,
_hop_period: u8,
iq_inverted: bool,
rx_continuous: bool,
) -> Result<(), RadioError<BUS>> {
let mut symb_timeout_final = symb_timeout;
self.rx_continuous = rx_continuous;
if self.rx_continuous {
symb_timeout_final = 0;
}
if fixed_len {
self.max_payload_length = payload_len;
} else {
self.max_payload_length = 0xFFu8;
}
self.sub_set_stop_rx_timer_on_preamble_detect(false).await?;
let mut low_data_rate_optimize = 0x00u8;
if (((spreading_factor == SpreadingFactor::_11) || (spreading_factor == SpreadingFactor::_12))
&& (bandwidth == Bandwidth::_125KHz))
|| ((spreading_factor == SpreadingFactor::_12) && (bandwidth == Bandwidth::_250KHz))
{
low_data_rate_optimize = 0x01u8;
}
let modulation_params = ModulationParams {
spreading_factor: spreading_factor,
bandwidth: bandwidth,
coding_rate: coding_rate,
low_data_rate_optimize: low_data_rate_optimize,
};
let mut preamble_length_final = preamble_length;
if ((spreading_factor == SpreadingFactor::_5) || (spreading_factor == SpreadingFactor::_6))
&& (preamble_length < 12)
{
preamble_length_final = 12;
}
let packet_params = PacketParams {
preamble_length: preamble_length_final,
implicit_header: fixed_len,
payload_length: self.max_payload_length,
crc_on: crc_on,
iq_inverted: iq_inverted,
};
self.modulation_params = Some(modulation_params);
self.packet_params = Some(packet_params);
self.standby().await?;
self.sub_set_modulation_params().await?;
self.sub_set_packet_params().await?;
self.sub_set_lora_symb_num_timeout(symb_timeout_final).await?;
// Optimize the Inverted IQ Operation (see DS_SX1261-2_V1.2 datasheet chapter 15.4)
let mut iq_polarity = [0x00u8];
self.brd_read_registers(Register::IQPolarity, &mut iq_polarity).await?;
if iq_inverted {
self.brd_write_registers(Register::IQPolarity, &[iq_polarity[0] & (!(1 << 2))])
.await?;
} else {
self.brd_write_registers(Register::IQPolarity, &[iq_polarity[0] | (1 << 2)])
.await?;
}
Ok(())
}
/// Set the transmission parameters for the LoRa modem (only).
/// power output power [dBm]
/// spreading_factor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips/symbol]
/// bandwidth [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
/// coding_rate [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
/// preamble_length length in symbols (the hardware adds 4 more symbols)
/// fixed_len fixed length packets [0: variable, 1: fixed]
/// crc_on [0: OFF, 1: ON]
/// freq_hop_on intra-packet frequency hopping [0: OFF, 1: ON]
/// hop_period number of symbols between each hop
/// iq_inverted invert IQ signals [0: not inverted, 1: inverted]
pub async fn set_tx_config(
&mut self,
power: i8,
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
fixed_len: bool,
crc_on: bool,
_freq_hop_on: bool,
_hop_period: u8,
iq_inverted: bool,
) -> Result<(), RadioError<BUS>> {
let mut low_data_rate_optimize = 0x00u8;
if (((spreading_factor == SpreadingFactor::_11) || (spreading_factor == SpreadingFactor::_12))
&& (bandwidth == Bandwidth::_125KHz))
|| ((spreading_factor == SpreadingFactor::_12) && (bandwidth == Bandwidth::_250KHz))
{
low_data_rate_optimize = 0x01u8;
}
let modulation_params = ModulationParams {
spreading_factor: spreading_factor,
bandwidth: bandwidth,
coding_rate: coding_rate,
low_data_rate_optimize: low_data_rate_optimize,
};
let mut preamble_length_final = preamble_length;
if ((spreading_factor == SpreadingFactor::_5) || (spreading_factor == SpreadingFactor::_6))
&& (preamble_length < 12)
{
preamble_length_final = 12;
}
let packet_params = PacketParams {
preamble_length: preamble_length_final,
implicit_header: fixed_len,
payload_length: self.max_payload_length,
crc_on: crc_on,
iq_inverted: iq_inverted,
};
self.modulation_params = Some(modulation_params);
self.packet_params = Some(packet_params);
self.standby().await?;
self.sub_set_modulation_params().await?;
self.sub_set_packet_params().await?;
// Handle modulation quality with the 500 kHz LoRa bandwidth (see DS_SX1261-2_V1.2 datasheet chapter 15.1)
let mut tx_modulation = [0x00u8];
self.brd_read_registers(Register::TxModulation, &mut tx_modulation)
.await?;
if bandwidth == Bandwidth::_500KHz {
self.brd_write_registers(Register::TxModulation, &[tx_modulation[0] & (!(1 << 2))])
.await?;
} else {
self.brd_write_registers(Register::TxModulation, &[tx_modulation[0] | (1 << 2)])
.await?;
}
self.brd_set_rf_tx_power(power).await?;
Ok(())
}
/// Check if the given RF frequency is supported by the hardware [true: supported, false: unsupported]
pub async fn check_rf_frequency(&mut self, frequency: u32) -> Result<bool, RadioError<BUS>> {
Ok(self.brd_check_rf_frequency(frequency).await?)
}
/// Computes the packet time on air in ms for the given payload for a LoRa modem (can only be called once set_rx_config or set_tx_config have been called)
/// spreading_factor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips/symbol]
/// bandwidth [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
/// coding_rate [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
/// preamble_length length in symbols (the hardware adds 4 more symbols)
/// fixed_len fixed length packets [0: variable, 1: fixed]
/// payload_len sets payload length when fixed length is used
/// crc_on [0: OFF, 1: ON]
pub fn get_time_on_air(
&mut self,
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
fixed_len: bool,
payload_len: u8,
crc_on: bool,
) -> Result<u32, RadioError<BUS>> {
let numerator = 1000
* Self::get_lora_time_on_air_numerator(
spreading_factor,
bandwidth,
coding_rate,
preamble_length,
fixed_len,
payload_len,
crc_on,
);
let denominator = bandwidth.value_in_hz();
if denominator == 0 {
Err(RadioError::InvalidBandwidth)
} else {
Ok((numerator + denominator - 1) / denominator)
}
}
/// Send the buffer of the given size. Prepares the packet to be sent and sets the radio in transmission [timeout in ms]
pub async fn send(&mut self, buffer: &[u8], timeout: u32) -> Result<(), RadioError<BUS>> {
if self.packet_params.is_some() {
self.sub_set_dio_irq_params(
IrqMask::TxDone.value() | IrqMask::RxTxTimeout.value(),
IrqMask::TxDone.value() | IrqMask::RxTxTimeout.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
let mut packet_params = self.packet_params.as_mut().unwrap();
packet_params.payload_length = buffer.len() as u8;
self.sub_set_packet_params().await?;
self.sub_send_payload(buffer, timeout).await?;
Ok(())
} else {
Err(RadioError::PacketParamsMissing)
}
}
/// Set the radio in sleep mode
pub async fn sleep(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_sleep(SleepParams {
wakeup_rtc: false,
reset: false,
warm_start: true,
})
.await?;
Timer::after(Duration::from_millis(2)).await;
Ok(())
}
/// Set the radio in standby mode
pub async fn standby(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_standby(StandbyMode::RC).await?;
Ok(())
}
/// Set the radio in reception mode for the given duration [0: continuous, others: timeout (ms)]
pub async fn rx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::All.value(),
IrqMask::All.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
if self.rx_continuous {
self.sub_set_rx(0xFFFFFF).await?;
} else {
self.sub_set_rx(timeout << 6).await?;
}
Ok(())
}
/// Start a Channel Activity Detection
pub async fn start_cad(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::CADDone.value() | IrqMask::CADActivityDetected.value(),
IrqMask::CADDone.value() | IrqMask::CADActivityDetected.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
self.sub_set_cad().await?;
Ok(())
}
/// Sets the radio in continuous wave transmission mode
/// frequency channel RF frequency
/// power output power [dBm]
/// timeout transmission mode timeout [s]
pub async fn set_tx_continuous_wave(
&mut self,
frequency: u32,
power: i8,
_timeout: u16,
) -> Result<(), RadioError<BUS>> {
self.sub_set_rf_frequency(frequency).await?;
self.brd_set_rf_tx_power(power).await?;
self.sub_set_tx_continuous_wave().await?;
Ok(())
}
/// Read the current RSSI value for the LoRa modem (only) [dBm]
pub async fn get_rssi(&mut self) -> Result<i16, RadioError<BUS>> {
let value = self.sub_get_rssi_inst().await?;
Ok(value as i16)
}
/// Write one or more radio registers with a buffer of a given size, starting at the first register address
pub async fn write_registers_from_buffer(
&mut self,
start_register: Register,
buffer: &[u8],
) -> Result<(), RadioError<BUS>> {
self.brd_write_registers(start_register, buffer).await?;
Ok(())
}
/// Read one or more radio registers into a buffer of a given size, starting at the first register address
pub async fn read_registers_into_buffer(
&mut self,
start_register: Register,
buffer: &mut [u8],
) -> Result<(), RadioError<BUS>> {
self.brd_read_registers(start_register, buffer).await?;
Ok(())
}
/// Set the maximum payload length (in bytes) for a LoRa modem (only).
pub async fn set_max_payload_length(&mut self, max: u8) -> Result<(), RadioError<BUS>> {
if self.packet_params.is_some() {
let packet_params = self.packet_params.as_mut().unwrap();
self.max_payload_length = max;
packet_params.payload_length = max;
self.sub_set_packet_params().await?;
Ok(())
} else {
Err(RadioError::PacketParamsMissing)
}
}
/// Get the time required for the board plus radio to get out of sleep [ms]
pub fn get_wakeup_time(&mut self) -> u32 {
self.brd_get_board_tcxo_wakeup_time() + RADIO_WAKEUP_TIME
}
/// Process the radio irq
pub async fn process_irq(
&mut self,
receiving_buffer: Option<&mut [u8]>,
received_len: Option<&mut u8>,
cad_activity_detected: Option<&mut bool>,
) -> Result<(), RadioError<BUS>> {
loop {
trace!("process_irq loop entered");
let de = self.sub_get_device_errors().await?;
trace!("device_errors: rc_64khz_calibration = {}, rc_13mhz_calibration = {}, pll_calibration = {}, adc_calibration = {}, image_calibration = {}, xosc_start = {}, pll_lock = {}, pa_ramp = {}",
de.rc_64khz_calibration, de.rc_13mhz_calibration, de.pll_calibration, de.adc_calibration, de.image_calibration, de.xosc_start, de.pll_lock, de.pa_ramp);
let st = self.sub_get_status().await?;
trace!(
"radio status: cmd_status: {:x}, chip_mode: {:x}",
st.cmd_status,
st.chip_mode
);
self.dio1.wait_for_high().await.map_err(|_| DIO1)?;
let operating_mode = self.brd_get_operating_mode();
let irq_flags = self.sub_get_irq_status().await?;
self.sub_clear_irq_status(irq_flags).await?;
trace!("process_irq DIO1 satisfied: irq_flags = {:x}", irq_flags);
// check for errors and unexpected interrupt masks (based on operation mode)
if (irq_flags & IrqMask::HeaderError.value()) == IrqMask::HeaderError.value() {
if !self.rx_continuous {
self.brd_set_operating_mode(RadioMode::StandbyRC);
}
return Err(RadioError::HeaderError);
} else if (irq_flags & IrqMask::CRCError.value()) == IrqMask::CRCError.value() {
if operating_mode == RadioMode::Receive {
if !self.rx_continuous {
self.brd_set_operating_mode(RadioMode::StandbyRC);
}
return Err(RadioError::CRCErrorOnReceive);
} else {
return Err(RadioError::CRCErrorUnexpected);
}
} else if (irq_flags & IrqMask::RxTxTimeout.value()) == IrqMask::RxTxTimeout.value() {
if operating_mode == RadioMode::Transmit {
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Err(RadioError::TransmitTimeout);
} else if operating_mode == RadioMode::Receive {
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Err(RadioError::ReceiveTimeout);
} else {
return Err(RadioError::TimeoutUnexpected);
}
} else if ((irq_flags & IrqMask::TxDone.value()) == IrqMask::TxDone.value())
&& (operating_mode != RadioMode::Transmit)
{
return Err(RadioError::TransmitDoneUnexpected);
} else if ((irq_flags & IrqMask::RxDone.value()) == IrqMask::RxDone.value())
&& (operating_mode != RadioMode::Receive)
{
return Err(RadioError::ReceiveDoneUnexpected);
} else if (((irq_flags & IrqMask::CADActivityDetected.value()) == IrqMask::CADActivityDetected.value())
|| ((irq_flags & IrqMask::CADDone.value()) == IrqMask::CADDone.value()))
&& (operating_mode != RadioMode::ChannelActivityDetection)
{
return Err(RadioError::CADUnexpected);
}
if (irq_flags & IrqMask::HeaderValid.value()) == IrqMask::HeaderValid.value() {
trace!("HeaderValid");
} else if (irq_flags & IrqMask::PreambleDetected.value()) == IrqMask::PreambleDetected.value() {
trace!("PreambleDetected");
} else if (irq_flags & IrqMask::SyncwordValid.value()) == IrqMask::SyncwordValid.value() {
trace!("SyncwordValid");
}
// handle completions
if (irq_flags & IrqMask::TxDone.value()) == IrqMask::TxDone.value() {
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Ok(());
} else if (irq_flags & IrqMask::RxDone.value()) == IrqMask::RxDone.value() {
if !self.rx_continuous {
self.brd_set_operating_mode(RadioMode::StandbyRC);
// implicit header mode timeout behavior (see DS_SX1261-2_V1.2 datasheet chapter 15.3)
self.brd_write_registers(Register::RTCCtrl, &[0x00]).await?;
let mut evt_clr = [0x00u8];
self.brd_read_registers(Register::EvtClr, &mut evt_clr).await?;
evt_clr[0] |= 1 << 1;
self.brd_write_registers(Register::EvtClr, &evt_clr).await?;
}
if receiving_buffer.is_some() && received_len.is_some() {
*(received_len.unwrap()) = self.sub_get_payload(receiving_buffer.unwrap()).await?;
}
self.packet_status = self.sub_get_packet_status().await?.into();
return Ok(());
} else if (irq_flags & IrqMask::CADDone.value()) == IrqMask::CADDone.value() {
if cad_activity_detected.is_some() {
*(cad_activity_detected.unwrap()) =
(irq_flags & IrqMask::CADActivityDetected.value()) == IrqMask::CADActivityDetected.value();
}
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Ok(());
}
// if DIO1 was driven high for reasons other than an error or operation completion (currently, PreambleDetected, SyncwordValid, and HeaderValid
// are in that category), loop to wait again
}
}
// SX126x-specific functions
/// Set the radio in reception mode with Max LNA gain for the given time (SX126x radios only) [0: continuous, others timeout in ms]
pub async fn set_rx_boosted(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::All.value(),
IrqMask::All.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
if self.rx_continuous {
self.sub_set_rx_boosted(0xFFFFFF).await?; // Rx continuous
} else {
self.sub_set_rx_boosted(timeout << 6).await?;
}
Ok(())
}
/// Set the Rx duty cycle management parameters (SX126x radios only)
/// rx_time structure describing reception timeout value
/// sleep_time structure describing sleep timeout value
pub async fn set_rx_duty_cycle(&mut self, rx_time: u32, sleep_time: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_rx_duty_cycle(rx_time, sleep_time).await?;
Ok(())
}
pub fn get_latest_packet_status(&mut self) -> Option<PacketStatus> {
self.packet_status
}
// Utilities
async fn add_register_to_retention_list(&mut self, register_address: u16) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; (1 + (2 * MAX_NUMBER_REGS_IN_RETENTION)) as usize];
// Read the address and registers already added to the list
self.brd_read_registers(Register::RetentionList, &mut buffer).await?;
let number_of_registers = buffer[0];
for i in 0..number_of_registers {
if register_address
== ((buffer[(1 + (2 * i)) as usize] as u16) << 8) | (buffer[(2 + (2 * i)) as usize] as u16)
{
return Ok(()); // register already in list
}
}
if number_of_registers < MAX_NUMBER_REGS_IN_RETENTION {
buffer[0] += 1; // increment number of registers
buffer[(1 + (2 * number_of_registers)) as usize] = ((register_address >> 8) & 0xFF) as u8;
buffer[(2 + (2 * number_of_registers)) as usize] = (register_address & 0xFF) as u8;
self.brd_write_registers(Register::RetentionList, &buffer).await?;
Ok(())
} else {
Err(RadioError::RetentionListExceeded)
}
}
fn get_lora_time_on_air_numerator(
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
fixed_len: bool,
payload_len: u8,
crc_on: bool,
) -> u32 {
let cell_denominator;
let cr_denominator = (coding_rate.value() as i32) + 4;
// Ensure that the preamble length is at least 12 symbols when using SF5 or SF6
let mut preamble_length_final = preamble_length;
if ((spreading_factor == SpreadingFactor::_5) || (spreading_factor == SpreadingFactor::_6))
&& (preamble_length < 12)
{
preamble_length_final = 12;
}
let mut low_data_rate_optimize = false;
if (((spreading_factor == SpreadingFactor::_11) || (spreading_factor == SpreadingFactor::_12))
&& (bandwidth == Bandwidth::_125KHz))
|| ((spreading_factor == SpreadingFactor::_12) && (bandwidth == Bandwidth::_250KHz))
{
low_data_rate_optimize = true;
}
let mut cell_numerator = ((payload_len as i32) << 3) + (if crc_on { 16 } else { 0 })
- (4 * spreading_factor.value() as i32)
+ (if fixed_len { 0 } else { 20 });
if spreading_factor.value() <= 6 {
cell_denominator = 4 * (spreading_factor.value() as i32);
} else {
cell_numerator += 8;
if low_data_rate_optimize {
cell_denominator = 4 * ((spreading_factor.value() as i32) - 2);
} else {
cell_denominator = 4 * (spreading_factor.value() as i32);
}
}
if cell_numerator < 0 {
cell_numerator = 0;
}
let mut intermediate: i32 = (((cell_numerator + cell_denominator - 1) / cell_denominator) * cr_denominator)
+ (preamble_length_final as i32)
+ 12;
if spreading_factor.value() <= 6 {
intermediate = intermediate + 2;
}
(((4 * intermediate) + 1) * (1 << (spreading_factor.value() - 2))) as u32
}
}

View File

@ -0,0 +1,469 @@
use core::fmt::Debug;
use lorawan_device::async_device::radio as device;
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RadioError<BUS> {
SPI(BUS),
CS,
Reset,
AntRx,
AntTx,
Busy,
DIO1,
PayloadSizeMismatch(usize, usize),
RetentionListExceeded,
InvalidBandwidth,
ModulationParamsMissing,
PacketParamsMissing,
HeaderError,
CRCErrorUnexpected,
CRCErrorOnReceive,
TransmitTimeout,
ReceiveTimeout,
TimeoutUnexpected,
TransmitDoneUnexpected,
ReceiveDoneUnexpected,
CADUnexpected,
}
pub struct RadioSystemError {
pub rc_64khz_calibration: bool,
pub rc_13mhz_calibration: bool,
pub pll_calibration: bool,
pub adc_calibration: bool,
pub image_calibration: bool,
pub xosc_start: bool,
pub pll_lock: bool,
pub pa_ramp: bool,
}
#[derive(Clone, Copy, PartialEq)]
pub enum PacketType {
GFSK = 0x00,
LoRa = 0x01,
None = 0x0F,
}
impl PacketType {
pub const fn value(self) -> u8 {
self as u8
}
pub fn to_enum(value: u8) -> Self {
if value == 0x00 {
PacketType::GFSK
} else if value == 0x01 {
PacketType::LoRa
} else {
PacketType::None
}
}
}
#[derive(Clone, Copy)]
pub struct PacketStatus {
pub rssi: i8,
pub snr: i8,
pub signal_rssi: i8,
pub freq_error: u32,
}
#[derive(Clone, Copy, PartialEq)]
pub enum RadioType {
SX1261,
SX1262,
}
#[derive(Clone, Copy, PartialEq)]
pub enum RadioMode {
Sleep = 0x00, // sleep mode
StandbyRC = 0x01, // standby mode with RC oscillator
StandbyXOSC = 0x02, // standby mode with XOSC oscillator
FrequencySynthesis = 0x03, // frequency synthesis mode
Transmit = 0x04, // transmit mode
Receive = 0x05, // receive mode
ReceiveDutyCycle = 0x06, // receive duty cycle mode
ChannelActivityDetection = 0x07, // channel activity detection mode
}
impl RadioMode {
/// Returns the value of the mode.
pub const fn value(self) -> u8 {
self as u8
}
pub fn to_enum(value: u8) -> Self {
if value == 0x00 {
RadioMode::Sleep
} else if value == 0x01 {
RadioMode::StandbyRC
} else if value == 0x02 {
RadioMode::StandbyXOSC
} else if value == 0x03 {
RadioMode::FrequencySynthesis
} else if value == 0x04 {
RadioMode::Transmit
} else if value == 0x05 {
RadioMode::Receive
} else if value == 0x06 {
RadioMode::ReceiveDutyCycle
} else if value == 0x07 {
RadioMode::ChannelActivityDetection
} else {
RadioMode::Sleep
}
}
}
pub enum RadioState {
Idle = 0x00,
RxRunning = 0x01,
TxRunning = 0x02,
ChannelActivityDetecting = 0x03,
}
impl RadioState {
/// Returns the value of the state.
pub fn value(self) -> u8 {
self as u8
}
}
pub struct RadioStatus {
pub cmd_status: u8,
pub chip_mode: u8,
}
impl RadioStatus {
pub fn value(self) -> u8 {
(self.chip_mode << 4) | (self.cmd_status << 1)
}
}
#[derive(Clone, Copy)]
pub enum IrqMask {
None = 0x0000,
TxDone = 0x0001,
RxDone = 0x0002,
PreambleDetected = 0x0004,
SyncwordValid = 0x0008,
HeaderValid = 0x0010,
HeaderError = 0x0020,
CRCError = 0x0040,
CADDone = 0x0080,
CADActivityDetected = 0x0100,
RxTxTimeout = 0x0200,
All = 0xFFFF,
}
impl IrqMask {
pub fn value(self) -> u16 {
self as u16
}
}
#[derive(Clone, Copy)]
pub enum Register {
PacketParams = 0x0704, // packet configuration
PayloadLength = 0x0702, // payload size
SynchTimeout = 0x0706, // recalculated number of symbols
Syncword = 0x06C0, // Syncword values
LoRaSyncword = 0x0740, // LoRa Syncword value
GeneratedRandomNumber = 0x0819, //32-bit generated random number
AnaLNA = 0x08E2, // disable the LNA
AnaMixer = 0x08E5, // disable the mixer
RxGain = 0x08AC, // RX gain (0x94: power saving, 0x96: rx boosted)
XTATrim = 0x0911, // device internal trimming capacitor
OCP = 0x08E7, // over current protection max value
RetentionList = 0x029F, // retention list
IQPolarity = 0x0736, // optimize the inverted IQ operation (see DS_SX1261-2_V1.2 datasheet chapter 15.4)
TxModulation = 0x0889, // modulation quality with 500 kHz LoRa Bandwidth (see DS_SX1261-2_V1.2 datasheet chapter 15.1)
TxClampCfg = 0x08D8, // better resistance to antenna mismatch (see DS_SX1261-2_V1.2 datasheet chapter 15.2)
RTCCtrl = 0x0902, // RTC control
EvtClr = 0x0944, // event clear
}
impl Register {
pub fn addr(self) -> u16 {
self as u16
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum OpCode {
GetStatus = 0xC0,
WriteRegister = 0x0D,
ReadRegister = 0x1D,
WriteBuffer = 0x0E,
ReadBuffer = 0x1E,
SetSleep = 0x84,
SetStandby = 0x80,
SetFS = 0xC1,
SetTx = 0x83,
SetRx = 0x82,
SetRxDutyCycle = 0x94,
SetCAD = 0xC5,
SetTxContinuousWave = 0xD1,
SetTxContinuousPremable = 0xD2,
SetPacketType = 0x8A,
GetPacketType = 0x11,
SetRFFrequency = 0x86,
SetTxParams = 0x8E,
SetPAConfig = 0x95,
SetCADParams = 0x88,
SetBufferBaseAddress = 0x8F,
SetModulationParams = 0x8B,
SetPacketParams = 0x8C,
GetRxBufferStatus = 0x13,
GetPacketStatus = 0x14,
GetRSSIInst = 0x15,
GetStats = 0x10,
ResetStats = 0x00,
CfgDIOIrq = 0x08,
GetIrqStatus = 0x12,
ClrIrqStatus = 0x02,
Calibrate = 0x89,
CalibrateImage = 0x98,
SetRegulatorMode = 0x96,
GetErrors = 0x17,
ClrErrors = 0x07,
SetTCXOMode = 0x97,
SetTxFallbackMode = 0x93,
SetRFSwitchMode = 0x9D,
SetStopRxTimerOnPreamble = 0x9F,
SetLoRaSymbTimeout = 0xA0,
}
impl OpCode {
pub fn value(self) -> u8 {
self as u8
}
}
pub struct SleepParams {
pub wakeup_rtc: bool, // get out of sleep mode if wakeup signal received from RTC
pub reset: bool,
pub warm_start: bool,
}
impl SleepParams {
pub fn value(self) -> u8 {
((self.warm_start as u8) << 2) | ((self.reset as u8) << 1) | (self.wakeup_rtc as u8)
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum StandbyMode {
RC = 0x00,
XOSC = 0x01,
}
impl StandbyMode {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub enum RegulatorMode {
UseLDO = 0x00,
UseDCDC = 0x01,
}
impl RegulatorMode {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub struct CalibrationParams {
pub rc64k_enable: bool, // calibrate RC64K clock
pub rc13m_enable: bool, // calibrate RC13M clock
pub pll_enable: bool, // calibrate PLL
pub adc_pulse_enable: bool, // calibrate ADC Pulse
pub adc_bulkn_enable: bool, // calibrate ADC bulkN
pub adc_bulkp_enable: bool, // calibrate ADC bulkP
pub img_enable: bool,
}
impl CalibrationParams {
pub fn value(self) -> u8 {
((self.img_enable as u8) << 6)
| ((self.adc_bulkp_enable as u8) << 5)
| ((self.adc_bulkn_enable as u8) << 4)
| ((self.adc_pulse_enable as u8) << 3)
| ((self.pll_enable as u8) << 2)
| ((self.rc13m_enable as u8) << 1)
| ((self.rc64k_enable as u8) << 0)
}
}
#[derive(Clone, Copy)]
pub enum TcxoCtrlVoltage {
Ctrl1V6 = 0x00,
Ctrl1V7 = 0x01,
Ctrl1V8 = 0x02,
Ctrl2V2 = 0x03,
Ctrl2V4 = 0x04,
Ctrl2V7 = 0x05,
Ctrl3V0 = 0x06,
Ctrl3V3 = 0x07,
}
impl TcxoCtrlVoltage {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub enum RampTime {
Ramp10Us = 0x00,
Ramp20Us = 0x01,
Ramp40Us = 0x02,
Ramp80Us = 0x03,
Ramp200Us = 0x04,
Ramp800Us = 0x05,
Ramp1700Us = 0x06,
Ramp3400Us = 0x07,
}
impl RampTime {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum SpreadingFactor {
_5 = 0x05,
_6 = 0x06,
_7 = 0x07,
_8 = 0x08,
_9 = 0x09,
_10 = 0x0A,
_11 = 0x0B,
_12 = 0x0C,
}
impl SpreadingFactor {
pub fn value(self) -> u8 {
self as u8
}
}
impl From<device::SpreadingFactor> for SpreadingFactor {
fn from(sf: device::SpreadingFactor) -> Self {
match sf {
device::SpreadingFactor::_7 => SpreadingFactor::_7,
device::SpreadingFactor::_8 => SpreadingFactor::_8,
device::SpreadingFactor::_9 => SpreadingFactor::_9,
device::SpreadingFactor::_10 => SpreadingFactor::_10,
device::SpreadingFactor::_11 => SpreadingFactor::_11,
device::SpreadingFactor::_12 => SpreadingFactor::_12,
}
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum Bandwidth {
_500KHz = 0x06,
_250KHz = 0x05,
_125KHz = 0x04,
}
impl Bandwidth {
pub fn value(self) -> u8 {
self as u8
}
pub fn value_in_hz(self) -> u32 {
match self {
Bandwidth::_125KHz => 125000u32,
Bandwidth::_250KHz => 250000u32,
Bandwidth::_500KHz => 500000u32,
}
}
}
impl From<device::Bandwidth> for Bandwidth {
fn from(bw: device::Bandwidth) -> Self {
match bw {
device::Bandwidth::_500KHz => Bandwidth::_500KHz,
device::Bandwidth::_250KHz => Bandwidth::_250KHz,
device::Bandwidth::_125KHz => Bandwidth::_125KHz,
}
}
}
#[derive(Clone, Copy)]
pub enum CodingRate {
_4_5 = 0x01,
_4_6 = 0x02,
_4_7 = 0x03,
_4_8 = 0x04,
}
impl CodingRate {
pub fn value(self) -> u8 {
self as u8
}
}
impl From<device::CodingRate> for CodingRate {
fn from(cr: device::CodingRate) -> Self {
match cr {
device::CodingRate::_4_5 => CodingRate::_4_5,
device::CodingRate::_4_6 => CodingRate::_4_6,
device::CodingRate::_4_7 => CodingRate::_4_7,
device::CodingRate::_4_8 => CodingRate::_4_8,
}
}
}
#[derive(Clone, Copy)]
pub struct ModulationParams {
pub spreading_factor: SpreadingFactor,
pub bandwidth: Bandwidth,
pub coding_rate: CodingRate,
pub low_data_rate_optimize: u8,
}
#[derive(Clone, Copy)]
pub struct PacketParams {
pub preamble_length: u16, // number of LoRa symbols in the preamble
pub implicit_header: bool, // if the header is explicit, it will be transmitted in the LoRa packet, but is not transmitted if the header is implicit (known fixed length)
pub payload_length: u8,
pub crc_on: bool,
pub iq_inverted: bool,
}
#[derive(Clone, Copy)]
pub enum CADSymbols {
_1 = 0x00,
_2 = 0x01,
_4 = 0x02,
_8 = 0x03,
_16 = 0x04,
}
impl CADSymbols {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub enum CADExitMode {
CADOnly = 0x00,
CADRx = 0x01,
CADLBT = 0x10,
}
impl CADExitMode {
pub fn value(self) -> u8 {
self as u8
}
}

View File

@ -0,0 +1,674 @@
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;
use super::mod_params::*;
use super::LoRa;
// Internal frequency of the radio
const SX126X_XTAL_FREQ: u32 = 32000000;
// Scaling factor used to perform fixed-point operations
const SX126X_PLL_STEP_SHIFT_AMOUNT: u32 = 14;
// PLL step - scaled with SX126X_PLL_STEP_SHIFT_AMOUNT
const SX126X_PLL_STEP_SCALED: u32 = SX126X_XTAL_FREQ >> (25 - SX126X_PLL_STEP_SHIFT_AMOUNT);
// Maximum value for parameter symbNum
const SX126X_MAX_LORA_SYMB_NUM_TIMEOUT: u8 = 248;
// Provides board-specific functionality for Semtech SX126x-based boards
impl<SPI, CTRL, WAIT, BUS> LoRa<SPI, CTRL, WAIT>
where
SPI: SpiBus<u8, Error = BUS>,
CTRL: OutputPin,
WAIT: Wait,
{
// Initialize the radio driver
pub(super) async fn sub_init(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_reset().await?;
self.brd_wakeup().await?;
self.sub_set_standby(StandbyMode::RC).await?;
self.brd_io_tcxo_init().await?;
self.brd_io_rf_switch_init().await?;
self.image_calibrated = false;
Ok(())
}
// Wakeup the radio if it is in Sleep mode and check that Busy is low
pub(super) async fn sub_check_device_ready(&mut self) -> Result<(), RadioError<BUS>> {
let operating_mode = self.brd_get_operating_mode();
if operating_mode == RadioMode::Sleep || operating_mode == RadioMode::ReceiveDutyCycle {
self.brd_wakeup().await?;
}
self.brd_wait_on_busy().await?;
Ok(())
}
// Save the payload to be sent in the radio buffer
pub(super) async fn sub_set_payload(&mut self, payload: &[u8]) -> Result<(), RadioError<BUS>> {
self.brd_write_buffer(0x00, payload).await?;
Ok(())
}
// Read the payload received.
pub(super) async fn sub_get_payload(&mut self, buffer: &mut [u8]) -> Result<u8, RadioError<BUS>> {
let (size, offset) = self.sub_get_rx_buffer_status().await?;
if (size as usize) > buffer.len() {
Err(RadioError::PayloadSizeMismatch(size as usize, buffer.len()))
} else {
self.brd_read_buffer(offset, buffer).await?;
Ok(size)
}
}
// Send a payload
pub(super) async fn sub_send_payload(&mut self, payload: &[u8], timeout: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_payload(payload).await?;
self.sub_set_tx(timeout).await?;
Ok(())
}
// Get a 32-bit random value generated by the radio. A valid packet type must have been configured before using this command.
//
// The radio must be in reception mode before executing this function. This code can potentially result in interrupt generation. It is the responsibility of
// the calling code to disable radio interrupts before calling this function, and re-enable them afterwards if necessary, or be certain that any interrupts
// generated during this process will not cause undesired side-effects in the software.
//
// The random numbers produced by the generator do not have a uniform or Gaussian distribution. If uniformity is needed, perform appropriate software post-processing.
pub(super) async fn sub_get_random(&mut self) -> Result<u32, RadioError<BUS>> {
let mut reg_ana_lna_buffer_original = [0x00u8];
let mut reg_ana_mixer_buffer_original = [0x00u8];
let mut reg_ana_lna_buffer = [0x00u8];
let mut reg_ana_mixer_buffer = [0x00u8];
let mut number_buffer = [0x00u8, 0x00u8, 0x00u8, 0x00u8];
self.brd_read_registers(Register::AnaLNA, &mut reg_ana_lna_buffer_original)
.await?;
reg_ana_lna_buffer[0] = reg_ana_lna_buffer_original[0] & (!(1 << 0));
self.brd_write_registers(Register::AnaLNA, &reg_ana_lna_buffer).await?;
self.brd_read_registers(Register::AnaMixer, &mut reg_ana_mixer_buffer_original)
.await?;
reg_ana_mixer_buffer[0] = reg_ana_mixer_buffer_original[0] & (!(1 << 7));
self.brd_write_registers(Register::AnaMixer, &reg_ana_mixer_buffer)
.await?;
// Set radio in continuous reception
self.sub_set_rx(0xFFFFFFu32).await?;
self.brd_read_registers(Register::GeneratedRandomNumber, &mut number_buffer)
.await?;
self.sub_set_standby(StandbyMode::RC).await?;
self.brd_write_registers(Register::AnaLNA, &reg_ana_lna_buffer_original)
.await?;
self.brd_write_registers(Register::AnaMixer, &reg_ana_mixer_buffer_original)
.await?;
Ok(Self::convert_u8_buffer_to_u32(&number_buffer))
}
// Set the radio in sleep mode
pub(super) async fn sub_set_sleep(&mut self, sleep_config: SleepParams) -> Result<(), RadioError<BUS>> {
self.brd_ant_sleep()?;
if !sleep_config.warm_start {
self.image_calibrated = false;
}
self.brd_write_command(OpCode::SetSleep, &[sleep_config.value()])
.await?;
self.brd_set_operating_mode(RadioMode::Sleep);
Ok(())
}
// Set the radio in configuration mode
pub(super) async fn sub_set_standby(&mut self, mode: StandbyMode) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetStandby, &[mode.value()]).await?;
if mode == StandbyMode::RC {
self.brd_set_operating_mode(RadioMode::StandbyRC);
} else {
self.brd_set_operating_mode(RadioMode::StandbyXOSC);
}
self.brd_ant_sleep()?;
Ok(())
}
// Set the radio in FS mode
pub(super) async fn sub_set_fs(&mut self) -> Result<(), RadioError<BUS>> {
// antenna settings ???
self.brd_write_command(OpCode::SetFS, &[]).await?;
self.brd_set_operating_mode(RadioMode::FrequencySynthesis);
Ok(())
}
// Set the radio in transmission mode with timeout specified
pub(super) async fn sub_set_tx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
self.brd_ant_set_tx()?;
self.brd_set_operating_mode(RadioMode::Transmit);
self.brd_write_command(OpCode::SetTx, &buffer).await?;
Ok(())
}
// Set the radio in reception mode with timeout specified
pub(super) async fn sub_set_rx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
self.brd_ant_set_rx()?;
self.brd_set_operating_mode(RadioMode::Receive);
self.brd_write_registers(Register::RxGain, &[0x94u8]).await?;
self.brd_write_command(OpCode::SetRx, &buffer).await?;
Ok(())
}
// Set the radio in reception mode with Boosted LNA gain and timeout specified
pub(super) async fn sub_set_rx_boosted(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
self.brd_ant_set_rx()?;
self.brd_set_operating_mode(RadioMode::Receive);
// set max LNA gain, increase current by ~2mA for around ~3dB in sensitivity
self.brd_write_registers(Register::RxGain, &[0x96u8]).await?;
self.brd_write_command(OpCode::SetRx, &buffer).await?;
Ok(())
}
// Set the Rx duty cycle management parameters
pub(super) async fn sub_set_rx_duty_cycle(&mut self, rx_time: u32, sleep_time: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
((rx_time >> 16) & 0xFF) as u8,
((rx_time >> 8) & 0xFF) as u8,
(rx_time & 0xFF) as u8,
((sleep_time >> 16) & 0xFF) as u8,
((sleep_time >> 8) & 0xFF) as u8,
(sleep_time & 0xFF) as u8,
];
// antenna settings ???
self.brd_write_command(OpCode::SetRxDutyCycle, &buffer).await?;
self.brd_set_operating_mode(RadioMode::ReceiveDutyCycle);
Ok(())
}
// Set the radio in CAD mode
pub(super) async fn sub_set_cad(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_ant_set_rx()?;
self.brd_write_command(OpCode::SetCAD, &[]).await?;
self.brd_set_operating_mode(RadioMode::ChannelActivityDetection);
Ok(())
}
// Set the radio in continuous wave transmission mode
pub(super) async fn sub_set_tx_continuous_wave(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_ant_set_tx()?;
self.brd_write_command(OpCode::SetTxContinuousWave, &[]).await?;
self.brd_set_operating_mode(RadioMode::Transmit);
Ok(())
}
// Set the radio in continuous preamble transmission mode
pub(super) async fn sub_set_tx_infinite_preamble(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_ant_set_tx()?;
self.brd_write_command(OpCode::SetTxContinuousPremable, &[]).await?;
self.brd_set_operating_mode(RadioMode::Transmit);
Ok(())
}
// Decide which interrupt will stop the internal radio rx timer.
// false timer stop after header/syncword detection
// true timer stop after preamble detection
pub(super) async fn sub_set_stop_rx_timer_on_preamble_detect(
&mut self,
enable: bool,
) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetStopRxTimerOnPreamble, &[enable as u8])
.await?;
Ok(())
}
// Set the number of symbols the radio will wait to validate a reception
pub(super) async fn sub_set_lora_symb_num_timeout(&mut self, symb_num: u16) -> Result<(), RadioError<BUS>> {
let mut exp = 0u8;
let mut reg;
let mut mant = ((core::cmp::min(symb_num, SX126X_MAX_LORA_SYMB_NUM_TIMEOUT as u16) as u8) + 1) >> 1;
while mant > 31 {
mant = (mant + 3) >> 2;
exp += 1;
}
reg = mant << ((2 * exp) + 1);
self.brd_write_command(OpCode::SetLoRaSymbTimeout, &[reg]).await?;
if symb_num != 0 {
reg = exp + (mant << 3);
self.brd_write_registers(Register::SynchTimeout, &[reg]).await?;
}
Ok(())
}
// Set the power regulators operating mode (LDO or DC_DC). Using only LDO implies that the Rx or Tx current is doubled
pub(super) async fn sub_set_regulator_mode(&mut self, mode: RegulatorMode) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetRegulatorMode, &[mode.value()])
.await?;
Ok(())
}
// Calibrate the given radio block
pub(super) async fn sub_calibrate(&mut self, calibrate_params: CalibrationParams) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::Calibrate, &[calibrate_params.value()])
.await?;
Ok(())
}
// Calibrate the image rejection based on the given frequency
pub(super) async fn sub_calibrate_image(&mut self, freq: u32) -> Result<(), RadioError<BUS>> {
let mut cal_freq = [0x00u8, 0x00u8];
if freq > 900000000 {
cal_freq[0] = 0xE1;
cal_freq[1] = 0xE9;
} else if freq > 850000000 {
cal_freq[0] = 0xD7;
cal_freq[1] = 0xDB;
} else if freq > 770000000 {
cal_freq[0] = 0xC1;
cal_freq[1] = 0xC5;
} else if freq > 460000000 {
cal_freq[0] = 0x75;
cal_freq[1] = 0x81;
} else if freq > 425000000 {
cal_freq[0] = 0x6B;
cal_freq[1] = 0x6F;
}
self.brd_write_command(OpCode::CalibrateImage, &cal_freq).await?;
Ok(())
}
// Activate the extention of the timeout when a long preamble is used
pub(super) async fn sub_set_long_preamble(&mut self, _enable: u8) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Set the transmission parameters
// hp_max 0 for sx1261, 7 for sx1262
// device_sel 1 for sx1261, 0 for sx1262
// pa_lut 0 for 14dBm LUT, 1 for 22dBm LUT
pub(super) async fn sub_set_pa_config(
&mut self,
pa_duty_cycle: u8,
hp_max: u8,
device_sel: u8,
pa_lut: u8,
) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetPAConfig, &[pa_duty_cycle, hp_max, device_sel, pa_lut])
.await?;
Ok(())
}
// Define into which mode the chip goes after a TX / RX done
pub(super) async fn sub_set_rx_tx_fallback_mode(&mut self, fallback_mode: u8) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetTxFallbackMode, &[fallback_mode])
.await?;
Ok(())
}
// Set the IRQ mask and DIO masks
pub(super) async fn sub_set_dio_irq_params(
&mut self,
irq_mask: u16,
dio1_mask: u16,
dio2_mask: u16,
dio3_mask: u16,
) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; 8];
buffer[0] = ((irq_mask >> 8) & 0x00FF) as u8;
buffer[1] = (irq_mask & 0x00FF) as u8;
buffer[2] = ((dio1_mask >> 8) & 0x00FF) as u8;
buffer[3] = (dio1_mask & 0x00FF) as u8;
buffer[4] = ((dio2_mask >> 8) & 0x00FF) as u8;
buffer[5] = (dio2_mask & 0x00FF) as u8;
buffer[6] = ((dio3_mask >> 8) & 0x00FF) as u8;
buffer[7] = (dio3_mask & 0x00FF) as u8;
self.brd_write_command(OpCode::CfgDIOIrq, &buffer).await?;
Ok(())
}
// Return the current IRQ status
pub(super) async fn sub_get_irq_status(&mut self) -> Result<u16, RadioError<BUS>> {
let mut irq_status = [0x00u8, 0x00u8];
self.brd_read_command(OpCode::GetIrqStatus, &mut irq_status).await?;
Ok(((irq_status[0] as u16) << 8) | (irq_status[1] as u16))
}
// Indicate if DIO2 is used to control an RF Switch
pub(super) async fn sub_set_dio2_as_rf_switch_ctrl(&mut self, enable: bool) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetRFSwitchMode, &[enable as u8]).await?;
Ok(())
}
// Indicate if the radio main clock is supplied from a TCXO
// tcxo_voltage voltage used to control the TCXO on/off from DIO3
// timeout duration given to the TCXO to go to 32MHz
pub(super) async fn sub_set_dio3_as_tcxo_ctrl(
&mut self,
tcxo_voltage: TcxoCtrlVoltage,
timeout: u32,
) -> Result<(), RadioError<BUS>> {
let buffer = [
tcxo_voltage.value() & 0x07,
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
self.brd_write_command(OpCode::SetTCXOMode, &buffer).await?;
Ok(())
}
// Set the RF frequency (Hz)
pub(super) async fn sub_set_rf_frequency(&mut self, frequency: u32) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; 4];
if !self.image_calibrated {
self.sub_calibrate_image(frequency).await?;
self.image_calibrated = true;
}
let freq_in_pll_steps = Self::convert_freq_in_hz_to_pll_step(frequency);
buffer[0] = ((freq_in_pll_steps >> 24) & 0xFF) as u8;
buffer[1] = ((freq_in_pll_steps >> 16) & 0xFF) as u8;
buffer[2] = ((freq_in_pll_steps >> 8) & 0xFF) as u8;
buffer[3] = (freq_in_pll_steps & 0xFF) as u8;
self.brd_write_command(OpCode::SetRFFrequency, &buffer).await?;
Ok(())
}
// Set the radio for the given protocol (LoRa or GFSK). This method has to be called before setting RF frequency, modulation paramaters, and packet paramaters.
pub(super) async fn sub_set_packet_type(&mut self, packet_type: PacketType) -> Result<(), RadioError<BUS>> {
self.packet_type = packet_type;
self.brd_write_command(OpCode::SetPacketType, &[packet_type.value()])
.await?;
Ok(())
}
// Get the current radio protocol (LoRa or GFSK)
pub(super) fn sub_get_packet_type(&mut self) -> PacketType {
self.packet_type
}
// Set the transmission parameters
// power RF output power [-18..13] dBm
// ramp_time transmission ramp up time
pub(super) async fn sub_set_tx_params(
&mut self,
mut power: i8,
ramp_time: RampTime,
) -> Result<(), RadioError<BUS>> {
if self.brd_get_radio_type() == RadioType::SX1261 {
if power == 15 {
self.sub_set_pa_config(0x06, 0x00, 0x01, 0x01).await?;
} else {
self.sub_set_pa_config(0x04, 0x00, 0x01, 0x01).await?;
}
if power >= 14 {
power = 14;
} else if power < -17 {
power = -17;
}
} else {
// Provide better resistance of the SX1262 Tx to antenna mismatch (see DS_SX1261-2_V1.2 datasheet chapter 15.2)
let mut tx_clamp_cfg = [0x00u8];
self.brd_read_registers(Register::TxClampCfg, &mut tx_clamp_cfg).await?;
tx_clamp_cfg[0] = tx_clamp_cfg[0] | (0x0F << 1);
self.brd_write_registers(Register::TxClampCfg, &tx_clamp_cfg).await?;
self.sub_set_pa_config(0x04, 0x07, 0x00, 0x01).await?;
if power > 22 {
power = 22;
} else if power < -9 {
power = -9;
}
}
// power conversion of negative number from i8 to u8 ???
self.brd_write_command(OpCode::SetTxParams, &[power as u8, ramp_time.value()])
.await?;
Ok(())
}
// Set the modulation parameters
pub(super) async fn sub_set_modulation_params(&mut self) -> Result<(), RadioError<BUS>> {
if self.modulation_params.is_some() {
let mut buffer = [0x00u8; 4];
// Since this driver only supports LoRa, ensure the packet type is set accordingly
self.sub_set_packet_type(PacketType::LoRa).await?;
let modulation_params = self.modulation_params.unwrap();
buffer[0] = modulation_params.spreading_factor.value();
buffer[1] = modulation_params.bandwidth.value();
buffer[2] = modulation_params.coding_rate.value();
buffer[3] = modulation_params.low_data_rate_optimize;
self.brd_write_command(OpCode::SetModulationParams, &buffer).await?;
Ok(())
} else {
Err(RadioError::ModulationParamsMissing)
}
}
// Set the packet parameters
pub(super) async fn sub_set_packet_params(&mut self) -> Result<(), RadioError<BUS>> {
if self.packet_params.is_some() {
let mut buffer = [0x00u8; 6];
// Since this driver only supports LoRa, ensure the packet type is set accordingly
self.sub_set_packet_type(PacketType::LoRa).await?;
let packet_params = self.packet_params.unwrap();
buffer[0] = ((packet_params.preamble_length >> 8) & 0xFF) as u8;
buffer[1] = (packet_params.preamble_length & 0xFF) as u8;
buffer[2] = packet_params.implicit_header as u8;
buffer[3] = packet_params.payload_length;
buffer[4] = packet_params.crc_on as u8;
buffer[5] = packet_params.iq_inverted as u8;
self.brd_write_command(OpCode::SetPacketParams, &buffer).await?;
Ok(())
} else {
Err(RadioError::PacketParamsMissing)
}
}
// Set the channel activity detection (CAD) parameters
// symbols number of symbols to use for CAD operations
// det_peak limit for detection of SNR peak used in the CAD
// det_min minimum symbol recognition for CAD
// exit_mode operation to be done at the end of CAD action
// timeout timeout value to abort the CAD activity
pub(super) async fn sub_set_cad_params(
&mut self,
symbols: CADSymbols,
det_peak: u8,
det_min: u8,
exit_mode: CADExitMode,
timeout: u32,
) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; 7];
buffer[0] = symbols.value();
buffer[1] = det_peak;
buffer[2] = det_min;
buffer[3] = exit_mode.value();
buffer[4] = Self::timeout_1(timeout);
buffer[5] = Self::timeout_2(timeout);
buffer[6] = Self::timeout_3(timeout);
self.brd_write_command(OpCode::SetCADParams, &buffer).await?;
self.brd_set_operating_mode(RadioMode::ChannelActivityDetection);
Ok(())
}
// Set the data buffer base address for transmission and reception
pub(super) async fn sub_set_buffer_base_address(
&mut self,
tx_base_address: u8,
rx_base_address: u8,
) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetBufferBaseAddress, &[tx_base_address, rx_base_address])
.await?;
Ok(())
}
// Get the current radio status
pub(super) async fn sub_get_status(&mut self) -> Result<RadioStatus, RadioError<BUS>> {
let status = self.brd_read_command(OpCode::GetStatus, &mut []).await?;
Ok(RadioStatus {
cmd_status: (status & (0x07 << 1)) >> 1,
chip_mode: (status & (0x07 << 4)) >> 4,
})
}
// Get the instantaneous RSSI value for the last packet received
pub(super) async fn sub_get_rssi_inst(&mut self) -> Result<i8, RadioError<BUS>> {
let mut buffer = [0x00u8];
self.brd_read_command(OpCode::GetRSSIInst, &mut buffer).await?;
let rssi: i8 = ((-(buffer[0] as i32)) >> 1) as i8; // check this ???
Ok(rssi)
}
// Get the last received packet buffer status
pub(super) async fn sub_get_rx_buffer_status(&mut self) -> Result<(u8, u8), RadioError<BUS>> {
if self.packet_params.is_some() {
let mut status = [0x00u8; 2];
let mut payload_length_buffer = [0x00u8];
self.brd_read_command(OpCode::GetRxBufferStatus, &mut status).await?;
if (self.sub_get_packet_type() == PacketType::LoRa) && self.packet_params.unwrap().implicit_header {
self.brd_read_registers(Register::PayloadLength, &mut payload_length_buffer)
.await?;
} else {
payload_length_buffer[0] = status[0];
}
let payload_length = payload_length_buffer[0];
let offset = status[1];
Ok((payload_length, offset))
} else {
Err(RadioError::PacketParamsMissing)
}
}
// Get the last received packet payload status
pub(super) async fn sub_get_packet_status(&mut self) -> Result<PacketStatus, RadioError<BUS>> {
let mut status = [0x00u8; 3];
self.brd_read_command(OpCode::GetPacketStatus, &mut status).await?;
// check this ???
let rssi = ((-(status[0] as i32)) >> 1) as i8;
let snr = ((status[1] as i8) + 2) >> 2;
let signal_rssi = ((-(status[2] as i32)) >> 1) as i8;
let freq_error = self.frequency_error;
Ok(PacketStatus {
rssi,
snr,
signal_rssi,
freq_error,
})
}
// Get the possible system errors
pub(super) async fn sub_get_device_errors(&mut self) -> Result<RadioSystemError, RadioError<BUS>> {
let mut errors = [0x00u8; 2];
self.brd_read_command(OpCode::GetErrors, &mut errors).await?;
Ok(RadioSystemError {
rc_64khz_calibration: (errors[1] & (1 << 0)) != 0,
rc_13mhz_calibration: (errors[1] & (1 << 1)) != 0,
pll_calibration: (errors[1] & (1 << 2)) != 0,
adc_calibration: (errors[1] & (1 << 3)) != 0,
image_calibration: (errors[1] & (1 << 4)) != 0,
xosc_start: (errors[1] & (1 << 5)) != 0,
pll_lock: (errors[1] & (1 << 6)) != 0,
pa_ramp: (errors[0] & (1 << 0)) != 0,
})
}
// Clear all the errors in the device
pub(super) async fn sub_clear_device_errors(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::ClrErrors, &[0x00u8, 0x00u8]).await?;
Ok(())
}
// Clear the IRQs
pub(super) async fn sub_clear_irq_status(&mut self, irq: u16) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8, 0x00u8];
buffer[0] = ((irq >> 8) & 0xFF) as u8;
buffer[1] = (irq & 0xFF) as u8;
self.brd_write_command(OpCode::ClrIrqStatus, &buffer).await?;
Ok(())
}
// Utility functions
fn timeout_1(timeout: u32) -> u8 {
((timeout >> 16) & 0xFF) as u8
}
fn timeout_2(timeout: u32) -> u8 {
((timeout >> 8) & 0xFF) as u8
}
fn timeout_3(timeout: u32) -> u8 {
(timeout & 0xFF) as u8
}
// check this ???
fn convert_u8_buffer_to_u32(buffer: &[u8; 4]) -> u32 {
let b0 = buffer[0] as u32;
let b1 = buffer[1] as u32;
let b2 = buffer[2] as u32;
let b3 = buffer[3] as u32;
(b0 << 24) | (b1 << 16) | (b2 << 8) | b3
}
fn convert_freq_in_hz_to_pll_step(freq_in_hz: u32) -> u32 {
// Get integer and fractional parts of the frequency computed with a PLL step scaled value
let steps_int = freq_in_hz / SX126X_PLL_STEP_SCALED;
let steps_frac = freq_in_hz - (steps_int * SX126X_PLL_STEP_SCALED);
(steps_int << SX126X_PLL_STEP_SHIFT_AMOUNT)
+ (((steps_frac << SX126X_PLL_STEP_SHIFT_AMOUNT) + (SX126X_PLL_STEP_SCALED >> 1)) / SX126X_PLL_STEP_SCALED)
}
}

View File

@ -6,7 +6,8 @@ license = "MIT OR Apache-2.0"
[features]
default = ["nightly"]
nightly = ["embassy-executor/nightly", "embassy-nrf/nightly", "embassy-net/nightly", "embassy-nrf/unstable-traits", "embassy-usb", "embedded-io/async", "embassy-net"]
nightly = ["embassy-executor/nightly", "embassy-nrf/nightly", "embassy-net/nightly", "embassy-nrf/unstable-traits", "embassy-usb", "embedded-io/async", "embassy-net",
"embassy-lora", "lorawan-device", "lorawan"]
[dependencies]
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
@ -17,6 +18,10 @@ embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defm
embassy-net = { version = "0.1.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet", "pool-16"], optional = true }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"], optional = true }
embedded-io = "0.3.0"
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["sx126x", "time", "defmt"], optional = true }
lorawan-device = { version = "0.8.0", default-features = false, features = ["async"], optional = true }
lorawan = { version = "0.7.1", default-features = false, features = ["default-crypto"], optional = true }
defmt = "0.3"
defmt-rtt = "0.3"

View File

@ -0,0 +1,78 @@
//! This example runs on the RAK4631 WisBlock, which has an nRF52840 MCU and Semtech Sx126x radio.
//! Other nrf/sx126x combinations may work with appropriate pin modifications.
//! It demonstates LORA P2P functionality in conjunction with example lora_p2p_sense.rs.
#![no_std]
#![no_main]
#![macro_use]
#![allow(dead_code)]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_lora::sx126x::*;
use embassy_nrf::gpio::{Input, Level, Output, OutputDrive, Pin as _, Pull};
use embassy_nrf::{interrupt, spim};
use embassy_time::{Duration, Timer};
use lorawan_device::async_device::radio::{Bandwidth, CodingRate, PhyRxTx, RfConfig, SpreadingFactor};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_nrf::init(Default::default());
let mut spi_config = spim::Config::default();
spi_config.frequency = spim::Frequency::M16;
let mut radio = {
let irq = interrupt::take!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
let spim = spim::Spim::new(p.TWISPI1, irq, p.P1_11, p.P1_13, p.P1_12, spi_config);
let cs = Output::new(p.P1_10.degrade(), Level::High, OutputDrive::Standard);
let reset = Output::new(p.P1_06.degrade(), Level::High, OutputDrive::Standard);
let dio1 = Input::new(p.P1_15.degrade(), Pull::Down);
let busy = Input::new(p.P1_14.degrade(), Pull::Down);
let antenna_rx = Output::new(p.P1_05.degrade(), Level::Low, OutputDrive::Standard);
let antenna_tx = Output::new(p.P1_07.degrade(), Level::Low, OutputDrive::Standard);
match Sx126xRadio::new(spim, cs, reset, antenna_rx, antenna_tx, dio1, busy, false).await {
Ok(r) => r,
Err(err) => {
info!("Sx126xRadio error = {}", err);
return;
}
}
};
let mut debug_indicator = Output::new(p.P1_03, Level::Low, OutputDrive::Standard);
let mut start_indicator = Output::new(p.P1_04, Level::Low, OutputDrive::Standard);
start_indicator.set_high();
Timer::after(Duration::from_secs(5)).await;
start_indicator.set_low();
loop {
let rf_config = RfConfig {
frequency: 903900000, // channel in Hz
bandwidth: Bandwidth::_250KHz,
spreading_factor: SpreadingFactor::_10,
coding_rate: CodingRate::_4_8,
};
let mut buffer = [00u8; 100];
// P2P receive
match radio.rx(rf_config, &mut buffer).await {
Ok((buffer_len, rx_quality)) => info!(
"RX received = {:?} with length = {} rssi = {} snr = {}",
&buffer[0..buffer_len],
buffer_len,
rx_quality.rssi(),
rx_quality.snr()
),
Err(err) => info!("RX error = {}", err),
}
debug_indicator.set_high();
Timer::after(Duration::from_secs(2)).await;
debug_indicator.set_low();
}
}

View File

@ -0,0 +1,125 @@
//! This example runs on the RAK4631 WisBlock, which has an nRF52840 MCU and Semtech Sx126x radio.
//! Other nrf/sx126x combinations may work with appropriate pin modifications.
//! It demonstates LORA P2P functionality in conjunction with example lora_p2p_report.rs.
#![no_std]
#![no_main]
#![macro_use]
#![feature(type_alias_impl_trait)]
#![feature(alloc_error_handler)]
#![allow(incomplete_features)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_lora::sx126x::*;
use embassy_nrf::gpio::{Input, Level, Output, OutputDrive, Pin as _, Pull};
use embassy_nrf::{interrupt, spim};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pubsub::{PubSubChannel, Publisher};
use embassy_time::{Duration, Timer};
use lorawan_device::async_device::radio::{Bandwidth, CodingRate, PhyRxTx, RfConfig, SpreadingFactor, TxConfig};
use {defmt_rtt as _, panic_probe as _, panic_probe as _};
// Message bus: queue of 2, 1 subscriber (Lora P2P), 2 publishers (temperature, motion detection)
static MESSAGE_BUS: PubSubChannel<CriticalSectionRawMutex, Message, 2, 1, 2> = PubSubChannel::new();
#[derive(Clone, defmt::Format)]
enum Message {
Temperature(i32),
MotionDetected,
}
#[embassy_executor::task]
async fn temperature_task(publisher: Publisher<'static, CriticalSectionRawMutex, Message, 2, 1, 2>) {
// Publish a fake temperature every 43 seconds, minimizing LORA traffic.
loop {
Timer::after(Duration::from_secs(43)).await;
publisher.publish(Message::Temperature(9)).await;
}
}
#[embassy_executor::task]
async fn motion_detection_task(publisher: Publisher<'static, CriticalSectionRawMutex, Message, 2, 1, 2>) {
// Publish a fake motion detection every 79 seconds, minimizing LORA traffic.
loop {
Timer::after(Duration::from_secs(79)).await;
publisher.publish(Message::MotionDetected).await;
}
}
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_nrf::init(Default::default());
// set up to funnel temperature and motion detection events to the Lora Tx task
let mut lora_tx_subscriber = unwrap!(MESSAGE_BUS.subscriber());
let temperature_publisher = unwrap!(MESSAGE_BUS.publisher());
let motion_detection_publisher = unwrap!(MESSAGE_BUS.publisher());
let mut spi_config = spim::Config::default();
spi_config.frequency = spim::Frequency::M16;
let mut radio = {
let irq = interrupt::take!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
let spim = spim::Spim::new(p.TWISPI1, irq, p.P1_11, p.P1_13, p.P1_12, spi_config);
let cs = Output::new(p.P1_10.degrade(), Level::High, OutputDrive::Standard);
let reset = Output::new(p.P1_06.degrade(), Level::High, OutputDrive::Standard);
let dio1 = Input::new(p.P1_15.degrade(), Pull::Down);
let busy = Input::new(p.P1_14.degrade(), Pull::Down);
let antenna_rx = Output::new(p.P1_05.degrade(), Level::Low, OutputDrive::Standard);
let antenna_tx = Output::new(p.P1_07.degrade(), Level::Low, OutputDrive::Standard);
match Sx126xRadio::new(spim, cs, reset, antenna_rx, antenna_tx, dio1, busy, false).await {
Ok(r) => r,
Err(err) => {
info!("Sx126xRadio error = {}", err);
return;
}
}
};
let mut start_indicator = Output::new(p.P1_04, Level::Low, OutputDrive::Standard);
start_indicator.set_high();
Timer::after(Duration::from_secs(5)).await;
start_indicator.set_low();
match radio.lora.sleep().await {
Ok(()) => info!("Sleep successful"),
Err(err) => info!("Sleep unsuccessful = {}", err),
}
unwrap!(spawner.spawn(temperature_task(temperature_publisher)));
unwrap!(spawner.spawn(motion_detection_task(motion_detection_publisher)));
loop {
let message = lora_tx_subscriber.next_message_pure().await;
let tx_config = TxConfig {
// 11 byte maximum payload for Bandwidth 125 and SF 10
pw: 10, // up to 20
rf: RfConfig {
frequency: 903900000, // channel in Hz, not MHz
bandwidth: Bandwidth::_250KHz,
spreading_factor: SpreadingFactor::_10,
coding_rate: CodingRate::_4_8,
},
};
let mut buffer = [0x00u8];
match message {
Message::Temperature(temperature) => buffer[0] = temperature as u8,
Message::MotionDetected => buffer[0] = 0x01u8,
};
// unencrypted
match radio.tx(tx_config, &buffer).await {
Ok(ret_val) => info!("TX ret_val = {}", ret_val),
Err(err) => info!("TX error = {}", err),
}
match radio.lora.sleep().await {
Ok(()) => info!("Sleep successful"),
Err(err) => info!("Sleep unsuccessful = {}", err),
}
}
}