Implement RTC peripheral for all stm32 families with rtc

This commit is contained in:
Mathias 2022-09-29 07:49:32 +02:00
parent 9bb43ffe9a
commit a83560c6b1
17 changed files with 1223 additions and 0 deletions

View File

@ -66,6 +66,7 @@ stm32-fmc = "0.2.4"
seq-macro = "0.3.0"
cfg-if = "1.0.0"
embedded-io = { version = "0.3.0", features = ["async"], optional = true }
chrono = { version = "^0.4", default-features = false, optional = true}
[build-dependencies]
proc-macro2 = "1.0.36"

View File

@ -46,6 +46,8 @@ pub mod flash;
pub mod pwm;
#[cfg(rng)]
pub mod rng;
#[cfg(all(rtc, not(rtc_v1)))]
pub mod rtc;
#[cfg(sdmmc)]
pub mod sdmmc;
#[cfg(spi)]

View File

@ -0,0 +1,85 @@
use chrono::{Datelike, Timelike};
use super::byte_to_bcd2;
use crate::pac::rtc::Rtc;
/// Alias for [`chrono::NaiveDateTime`]
pub type DateTime = chrono::NaiveDateTime;
/// Alias for [`chrono::Weekday`]
pub type DayOfWeek = chrono::Weekday;
/// Errors regarding the [`DateTime`] and [`DateTimeFilter`] structs.
///
/// [`DateTimeFilter`]: struct.DateTimeFilter.html
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Error {
/// The [DateTime] has an invalid year. The year must be between 0 and 4095.
InvalidYear,
/// The [DateTime] contains an invalid date.
InvalidDate,
/// The [DateTime] contains an invalid time.
InvalidTime,
}
pub(super) fn day_of_week_to_u8(dotw: DayOfWeek) -> u8 {
dotw.num_days_from_monday() as u8
}
pub(crate) fn validate_datetime(dt: &DateTime) -> Result<(), Error> {
if dt.year() < 0 || dt.year() > 4095 {
// rp2040 can't hold these years
Err(Error::InvalidYear)
} else {
// The rest of the chrono date is assumed to be valid
Ok(())
}
}
pub(super) fn write_date_time(rtc: &Rtc, t: DateTime) {
let (ht, hu) = byte_to_bcd2(t.hour() as u8);
let (mnt, mnu) = byte_to_bcd2(t.minute() as u8);
let (st, su) = byte_to_bcd2(t.second() as u8);
let (dt, du) = byte_to_bcd2(t.day() as u8);
let (mt, mu) = byte_to_bcd2(t.month() as u8);
let yr = t.year() as u16;
let yr_offset = (yr - 1970_u16) as u8;
let (yt, yu) = byte_to_bcd2(yr_offset);
unsafe {
rtc.tr().write(|w| {
w.set_ht(ht);
w.set_hu(hu);
w.set_mnt(mnt);
w.set_mnu(mnu);
w.set_st(st);
w.set_su(su);
w.set_pm(stm32_metapac::rtc::vals::Ampm::AM);
});
rtc.dr().write(|w| {
w.set_dt(dt);
w.set_du(du);
w.set_mt(mt > 0);
w.set_mu(mu);
w.set_yt(yt);
w.set_yu(yu);
w.set_wdu(day_of_week_to_u8(t.weekday()));
});
}
}
pub(super) fn datetime(
year: u16,
month: u8,
day: u8,
_day_of_week: u8,
hour: u8,
minute: u8,
second: u8,
) -> Result<DateTime, Error> {
let date = chrono::NaiveDate::from_ymd_opt(year.into(), month.try_into().unwrap(), day.into())
.ok_or(Error::InvalidDate)?;
let time = chrono::NaiveTime::from_hms_opt(hour.into(), minute.into(), second.into()).ok_or(Error::InvalidTime)?;
Ok(DateTime::new(date, time))
}

View File

@ -0,0 +1,146 @@
use super::byte_to_bcd2;
use crate::pac::rtc::Rtc;
/// Errors regarding the [`DateTime`] struct.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Error {
/// The [DateTime] contains an invalid year value. Must be between `0..=4095`.
InvalidYear,
/// The [DateTime] contains an invalid month value. Must be between `1..=12`.
InvalidMonth,
/// The [DateTime] contains an invalid day value. Must be between `1..=31`.
InvalidDay,
/// The [DateTime] contains an invalid day of week. Must be between `0..=6` where 0 is Sunday.
InvalidDayOfWeek(
/// The value of the DayOfWeek that was given.
u8,
),
/// The [DateTime] contains an invalid hour value. Must be between `0..=23`.
InvalidHour,
/// The [DateTime] contains an invalid minute value. Must be between `0..=59`.
InvalidMinute,
/// The [DateTime] contains an invalid second value. Must be between `0..=59`.
InvalidSecond,
}
/// Structure containing date and time information
pub struct DateTime {
/// 0..4095
pub year: u16,
/// 1..12, 1 is January
pub month: u8,
/// 1..28,29,30,31 depending on month
pub day: u8,
///
pub day_of_week: DayOfWeek,
/// 0..23
pub hour: u8,
/// 0..59
pub minute: u8,
/// 0..59
pub second: u8,
}
/// A day of the week
#[repr(u8)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Hash)]
#[allow(missing_docs)]
pub enum DayOfWeek {
Monday = 0,
Tuesday = 1,
Wednesday = 2,
Thursday = 3,
Friday = 4,
Saturday = 5,
Sunday = 6,
}
fn day_of_week_from_u8(v: u8) -> Result<DayOfWeek, Error> {
Ok(match v {
0 => DayOfWeek::Monday,
1 => DayOfWeek::Tuesday,
2 => DayOfWeek::Wednesday,
3 => DayOfWeek::Thursday,
4 => DayOfWeek::Friday,
5 => DayOfWeek::Saturday,
6 => DayOfWeek::Sunday,
x => return Err(Error::InvalidDayOfWeek(x)),
})
}
pub(super) fn day_of_week_to_u8(dotw: DayOfWeek) -> u8 {
dotw as u8
}
pub(super) fn validate_datetime(dt: &DateTime) -> Result<(), Error> {
if dt.year > 4095 {
Err(Error::InvalidYear)
} else if dt.month < 1 || dt.month > 12 {
Err(Error::InvalidMonth)
} else if dt.day < 1 || dt.day > 31 {
Err(Error::InvalidDay)
} else if dt.hour > 23 {
Err(Error::InvalidHour)
} else if dt.minute > 59 {
Err(Error::InvalidMinute)
} else if dt.second > 59 {
Err(Error::InvalidSecond)
} else {
Ok(())
}
}
pub(super) fn write_date_time(rtc: &Rtc, t: DateTime) {
let (ht, hu) = byte_to_bcd2(t.hour as u8);
let (mnt, mnu) = byte_to_bcd2(t.minute as u8);
let (st, su) = byte_to_bcd2(t.second as u8);
let (dt, du) = byte_to_bcd2(t.day as u8);
let (mt, mu) = byte_to_bcd2(t.month as u8);
let yr = t.year as u16;
let yr_offset = (yr - 1970_u16) as u8;
let (yt, yu) = byte_to_bcd2(yr_offset);
unsafe {
rtc.tr().write(|w| {
w.set_ht(ht);
w.set_hu(hu);
w.set_mnt(mnt);
w.set_mnu(mnu);
w.set_st(st);
w.set_su(su);
w.set_pm(stm32_metapac::rtc::vals::Ampm::AM);
});
rtc.dr().write(|w| {
w.set_dt(dt);
w.set_du(du);
w.set_mt(mt > 0);
w.set_mu(mu);
w.set_yt(yt);
w.set_yu(yu);
w.set_wdu(day_of_week_to_u8(t.day_of_week));
});
}
}
pub(super) fn datetime(
year: u16,
month: u8,
day: u8,
day_of_week: u8,
hour: u8,
minute: u8,
second: u8,
) -> Result<DateTime, Error> {
let day_of_week = day_of_week_from_u8(day_of_week)?;
Ok(DateTime {
year,
month,
day,
day_of_week,
hour,
minute,
second,
})
}

View File

@ -0,0 +1,238 @@
//! RTC peripheral abstraction
use core::marker::PhantomData;
#[cfg_attr(feature = "chrono", path = "datetime_chrono.rs")]
#[cfg_attr(not(feature = "chrono"), path = "datetime_no_deps.rs")]
mod datetime;
pub use self::datetime::{DateTime, DayOfWeek, Error as DateTimeError};
/// refer to AN4759 to compare features of RTC2 and RTC3
#[cfg_attr(any(rtc_v1), path = "v1.rs")]
#[cfg_attr(
any(
rtc_v2f0, rtc_v2f2, rtc_v2f3, rtc_v2f4, rtc_v2f7, rtc_v2h7, rtc_v2l0, rtc_v2l1, rtc_v2l4, rtc_v2wb
),
path = "v2/mod.rs"
)]
#[cfg_attr(any(rtc_v3, rtc_v3u5), path = "v3.rs")]
mod versions;
use embassy_hal_common::Peripheral;
pub use versions::*;
/// Errors that can occur on methods on [RtcClock]
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum RtcError {
/// An invalid DateTime was given or stored on the hardware.
InvalidDateTime(DateTimeError),
/// The RTC clock is not running
NotRunning,
}
/// RTC Abstraction
pub struct Rtc<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
rtc_config: RtcConfig,
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(u8)]
pub enum RtcClockSource {
/// 00: No clock
NoClock = 0b00,
/// 01: LSE oscillator clock used as RTC clock
LSE = 0b01,
/// 10: LSI oscillator clock used as RTC clock
LSI = 0b10,
/// 11: HSE oscillator clock divided by 32 used as RTC clock
HSE = 0b11,
}
#[derive(Copy, Clone, PartialEq)]
pub struct RtcConfig {
/// RTC clock source
clock_config: RtcClockSource,
/// Asynchronous prescaler factor
/// This is the asynchronous division factor:
/// ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)
/// ck_apre drives the subsecond register
async_prescaler: u8,
/// Synchronous prescaler factor
/// This is the synchronous division factor:
/// ck_spre frequency = ck_apre frequency/(PREDIV_S+1)
/// ck_spre must be 1Hz
sync_prescaler: u16,
}
impl Default for RtcConfig {
/// LSI with prescalers assuming 32.768 kHz.
/// Raw sub-seconds in 1/256.
fn default() -> Self {
RtcConfig {
clock_config: RtcClockSource::LSI,
async_prescaler: 127,
sync_prescaler: 255,
}
}
}
impl RtcConfig {
/// Sets the clock source of RTC config
pub fn clock_config(mut self, cfg: RtcClockSource) -> Self {
self.clock_config = cfg;
self
}
/// Set the asynchronous prescaler of RTC config
pub fn async_prescaler(mut self, prescaler: u8) -> Self {
self.async_prescaler = prescaler;
self
}
/// Set the synchronous prescaler of RTC config
pub fn sync_prescaler(mut self, prescaler: u16) -> Self {
self.sync_prescaler = prescaler;
self
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(u8)]
pub enum RtcCalibrationCyclePeriod {
/// 8-second calibration period
Seconds8,
/// 16-second calibration period
Seconds16,
/// 32-second calibration period
Seconds32,
}
impl Default for RtcCalibrationCyclePeriod {
fn default() -> Self {
RtcCalibrationCyclePeriod::Seconds32
}
}
impl<'d, T: Instance> Rtc<'d, T> {
pub fn new(_rtc: impl Peripheral<P = T> + 'd, rtc_config: RtcConfig) -> Self {
unsafe { enable_peripheral_clk() };
let mut rtc_struct = Self {
phantom: PhantomData,
rtc_config,
};
rtc_struct.apply_config(rtc_config);
rtc_struct
}
/// Set the datetime to a new value.
///
/// # Errors
///
/// Will return `RtcError::InvalidDateTime` if the datetime is not a valid range.
pub fn set_datetime(&mut self, t: DateTime) -> Result<(), RtcError> {
self::datetime::validate_datetime(&t).map_err(RtcError::InvalidDateTime)?;
self.write(true, |rtc| self::datetime::write_date_time(rtc, t));
Ok(())
}
/// Return the current datetime.
///
/// # Errors
///
/// Will return an `RtcError::InvalidDateTime` if the stored value in the system is not a valid [`DayOfWeek`].
pub fn now(&self) -> Result<DateTime, RtcError> {
let r = T::regs();
unsafe {
let tr = r.tr().read();
let second = bcd2_to_byte((tr.st(), tr.su()));
let minute = bcd2_to_byte((tr.mnt(), tr.mnu()));
let hour = bcd2_to_byte((tr.ht(), tr.hu()));
// Reading either RTC_SSR or RTC_TR locks the values in the higher-order
// calendar shadow registers until RTC_DR is read.
let dr = r.dr().read();
let weekday = dr.wdu();
let day = bcd2_to_byte((dr.dt(), dr.du()));
let month = bcd2_to_byte((dr.mt() as u8, dr.mu()));
let year = bcd2_to_byte((dr.yt(), dr.yu())) as u16 + 1970_u16;
self::datetime::datetime(year, month, day, weekday, hour, minute, second).map_err(RtcError::InvalidDateTime)
}
}
/// Check if daylight savings time is active.
pub fn get_daylight_savings(&self) -> bool {
let cr = unsafe { T::regs().cr().read() };
cr.bkp()
}
/// Enable/disable daylight savings time.
pub fn set_daylight_savings(&mut self, daylight_savings: bool) {
self.write(true, |rtc| {
unsafe { rtc.cr().modify(|w| w.set_bkp(daylight_savings)) };
})
}
pub fn get_config(&self) -> RtcConfig {
self.rtc_config
}
pub const BACKUP_REGISTER_COUNT: usize = BACKUP_REGISTER_COUNT;
/// Read content of the backup register.
///
/// The registers retain their values during wakes from standby mode or system resets. They also
/// retain their value when Vdd is switched off as long as V_BAT is powered.
pub fn read_backup_register(&self, register: usize) -> Option<u32> {
read_backup_register(&T::regs(), register)
}
/// Set content of the backup register.
///
/// The registers retain their values during wakes from standby mode or system resets. They also
/// retain their value when Vdd is switched off as long as V_BAT is powered.
pub fn write_backup_register(&self, register: usize, value: u32) {
write_backup_register(&T::regs(), register, value)
}
}
pub(crate) fn byte_to_bcd2(byte: u8) -> (u8, u8) {
let mut bcd_high: u8 = 0;
let mut value = byte;
while value >= 10 {
bcd_high += 1;
value -= 10;
}
(bcd_high, ((bcd_high << 4) | value) as u8)
}
pub(crate) fn bcd2_to_byte(bcd: (u8, u8)) -> u8 {
let value = bcd.1 | bcd.0 << 4;
let tmp = ((value & 0xF0) >> 0x4) * 10;
tmp + (value & 0x0F)
}
pub(crate) mod sealed {
pub trait Instance {
fn regs() -> crate::pac::rtc::Rtc;
}
}
pub trait Instance: sealed::Instance + 'static {}
impl sealed::Instance for crate::peripherals::RTC {
fn regs() -> crate::pac::rtc::Rtc {
crate::pac::RTC
}
}
impl Instance for crate::peripherals::RTC {}

View File

@ -0,0 +1,171 @@
use stm32_metapac::rtc::vals::{Init, Osel, Pol};
use super::{Instance, RtcConfig};
use crate::pac::rtc::Rtc;
#[cfg_attr(rtc_v2f0, path = "v2f0.rs")]
#[cfg_attr(rtc_v2f2, path = "v2f2.rs")]
#[cfg_attr(rtc_v2f3, path = "v2f3.rs")]
#[cfg_attr(rtc_v2f4, path = "v2f4.rs")]
#[cfg_attr(rtc_v2f7, path = "v2f7.rs")]
#[cfg_attr(rtc_v2h7, path = "v2h7.rs")]
#[cfg_attr(rtc_v2l0, path = "v2l0.rs")]
#[cfg_attr(rtc_v2l1, path = "v2l1.rs")]
#[cfg_attr(rtc_v2l4, path = "v2l4.rs")]
#[cfg_attr(rtc_v2wb, path = "v2wb.rs")]
mod family;
pub use family::*;
impl<'d, T: Instance> super::Rtc<'d, T> {
/// Applies the RTC config
/// It this changes the RTC clock source the time will be reset
pub(super) fn apply_config(&mut self, rtc_config: RtcConfig) {
// Unlock the backup domain
unsafe {
unlock_backup_domain(rtc_config.clock_config as u8);
}
self.write(true, |rtc| unsafe {
rtc.cr().modify(|w| {
#[cfg(rtc_v2f2)]
w.set_fmt(false);
#[cfg(not(rtc_v2f2))]
w.set_fmt(stm32_metapac::rtc::vals::Fmt::TWENTY_FOUR_HOUR);
w.set_osel(Osel::DISABLED);
w.set_pol(Pol::HIGH);
});
rtc.prer().modify(|w| {
w.set_prediv_s(rtc_config.sync_prescaler);
w.set_prediv_a(rtc_config.async_prescaler);
});
});
self.rtc_config = rtc_config;
}
/// Calibrate the clock drift.
///
/// `clock_drift` can be adjusted from -487.1 ppm to 488.5 ppm and is clamped to this range.
///
/// ### Note
///
/// To perform a calibration when `async_prescaler` is less then 3, `sync_prescaler`
/// has to be reduced accordingly (see RM0351 Rev 9, sec 38.3.12).
#[cfg(not(rtc_v2f2))]
pub fn calibrate(&mut self, mut clock_drift: f32, period: super::RtcCalibrationCyclePeriod) {
const RTC_CALR_MIN_PPM: f32 = -487.1;
const RTC_CALR_MAX_PPM: f32 = 488.5;
const RTC_CALR_RESOLUTION_PPM: f32 = 0.9537;
if clock_drift < RTC_CALR_MIN_PPM {
clock_drift = RTC_CALR_MIN_PPM;
} else if clock_drift > RTC_CALR_MAX_PPM {
clock_drift = RTC_CALR_MAX_PPM;
}
clock_drift = clock_drift / RTC_CALR_RESOLUTION_PPM;
self.write(false, |rtc| {
unsafe {
rtc.calr().write(|w| {
match period {
super::RtcCalibrationCyclePeriod::Seconds8 => {
w.set_calw8(stm32_metapac::rtc::vals::Calw8::EIGHT_SECOND);
}
super::RtcCalibrationCyclePeriod::Seconds16 => {
w.set_calw16(stm32_metapac::rtc::vals::Calw16::SIXTEEN_SECOND);
}
super::RtcCalibrationCyclePeriod::Seconds32 => {
// Set neither `calw8` nor `calw16` to use 32 seconds
}
}
// Extra pulses during calibration cycle period: CALP * 512 - CALM
//
// CALP sets whether pulses are added or omitted.
//
// CALM contains how many pulses (out of 512) are masked in a
// given calibration cycle period.
if clock_drift > 0.0 {
// Maximum (about 512.2) rounds to 512.
clock_drift += 0.5;
// When the offset is positive (0 to 512), the opposite of
// the offset (512 - offset) is masked, i.e. for the
// maximum offset (512), 0 pulses are masked.
w.set_calp(stm32_metapac::rtc::vals::Calp::INCREASEFREQ);
w.set_calm(512 - clock_drift as u16);
} else {
// Minimum (about -510.7) rounds to -511.
clock_drift -= 0.5;
// When the offset is negative or zero (-511 to 0),
// the absolute offset is masked, i.e. for the minimum
// offset (-511), 511 pulses are masked.
w.set_calp(stm32_metapac::rtc::vals::Calp::NOCHANGE);
w.set_calm((clock_drift * -1.0) as u16);
}
});
}
})
}
pub(super) fn write<F, R>(&mut self, init_mode: bool, f: F) -> R
where
F: FnOnce(&crate::pac::rtc::Rtc) -> R,
{
let r = T::regs();
// Disable write protection.
// This is safe, as we're only writin the correct and expected values.
unsafe {
r.wpr().write(|w| w.set_key(0xca));
r.wpr().write(|w| w.set_key(0x53));
// true if initf bit indicates RTC peripheral is in init mode
if init_mode && !r.isr().read().initf() {
// to update calendar date/time, time format, and prescaler configuration, RTC must be in init mode
r.isr().modify(|w| w.set_init(Init::INITMODE));
// wait till init state entered
// ~2 RTCCLK cycles
while !r.isr().read().initf() {}
}
}
let result = f(&r);
unsafe {
if init_mode {
r.isr().modify(|w| w.set_init(Init::FREERUNNINGMODE)); // Exits init mode
}
// Re-enable write protection.
// This is safe, as the field accepts the full range of 8-bit values.
r.wpr().write(|w| w.set_key(0xff));
}
result
}
}
/// Read content of the backup register.
///
/// The registers retain their values during wakes from standby mode or system resets. They also
/// retain their value when Vdd is switched off as long as V_BAT is powered.
pub fn read_backup_register(rtc: &Rtc, register: usize) -> Option<u32> {
if register < BACKUP_REGISTER_COUNT {
Some(unsafe { rtc.bkpr(register).read().bkp() })
} else {
None
}
}
/// Set content of the backup register.
///
/// The registers retain their values during wakes from standby mode or system resets. They also
/// retain their value when Vdd is switched off as long as V_BAT is powered.
pub fn write_backup_register(rtc: &Rtc, register: usize, value: u32) {
if register < BACKUP_REGISTER_COUNT {
unsafe { rtc.bkpr(register).write(|w| w.set_bkp(value)) }
}
}

View File

@ -0,0 +1,41 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
// Restore bcdr
w.set_lscosel(reg.lscosel());
w.set_lscoen(reg.lscoen());
w.set_lseon(reg.lseon());
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// enable peripheral clock for communication
crate::pac::RCC.apb1enr1().modify(|w| w.set_rtcapben(true));
// read to allow the pwr clock to enable
crate::pac::PWR.cr1().read();
}

View File

@ -0,0 +1,31 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
w.set_lseon(reg.lseon());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// Nothing to do
}

View File

@ -0,0 +1,31 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
w.set_lseon(reg.lseon());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// Nothing to do
}

View File

@ -0,0 +1,31 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
w.set_lseon(reg.lseon());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// Nothing to do
}

View File

@ -0,0 +1,41 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
// Restore bcdr
w.set_lscosel(reg.lscosel());
w.set_lscoen(reg.lscoen());
w.set_lseon(reg.lseon());
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// enable peripheral clock for communication
crate::pac::RCC.apb1enr1().modify(|w| w.set_rtcapben(true));
// read to allow the pwr clock to enable
crate::pac::PWR.cr1().read();
}

View File

@ -0,0 +1,33 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
w.set_lseon(reg.lseon());
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// Nothing to do
}

View File

@ -0,0 +1,40 @@
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(_clock_config: u8) {
// FIXME:
// crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
// while !crate::pac::PWR.cr1().read().dbp() {}
// let reg = crate::pac::RCC.bdcr().read();
// assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
// if !reg.rtcen() || reg.rtcsel().0 != clock_config {
// crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
// crate::pac::RCC.bdcr().modify(|w| {
// // Reset
// w.set_bdrst(false);
// // Select RTC source
// w.set_rtcsel(Rtcsel(clock_config));
// w.set_rtcen(true);
// // Restore bcdr
// w.set_lscosel(reg.lscosel());
// w.set_lscoen(reg.lscoen());
// w.set_lseon(reg.lseon());
// w.set_lsedrv(reg.lsedrv());
// w.set_lsebyp(reg.lsebyp());
// });
// }
}
pub(crate) unsafe fn enable_peripheral_clk() {
// // enable peripheral clock for communication
// crate::pac::rcc.apb1enr1().modify(|w| w.set_rtcapben(true));
// // read to allow the pwr clock to enable
// crate::pac::PWR.cr1().read();
}

View File

@ -0,0 +1,40 @@
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(_clock_config: u8) {
// FIXME:
// crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
// while !crate::pac::PWR.cr1().read().dbp() {}
// let reg = crate::pac::RCC.bdcr().read();
// assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
// if !reg.rtcen() || reg.rtcsel().0 != clock_config {
// crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
// crate::pac::RCC.bdcr().modify(|w| {
// // Reset
// w.set_bdrst(false);
// // Select RTC source
// w.set_rtcsel(Rtcsel(clock_config));
// w.set_rtcen(true);
// // Restore bcdr
// w.set_lscosel(reg.lscosel());
// w.set_lscoen(reg.lscoen());
// w.set_lseon(reg.lseon());
// w.set_lsedrv(reg.lsedrv());
// w.set_lsebyp(reg.lsebyp());
// });
// }
}
pub(crate) unsafe fn enable_peripheral_clk() {
// // enable peripheral clock for communication
// crate::pac::rcc.apb1enr1().modify(|w| w.set_rtcapben(true));
// // read to allow the pwr clock to enable
// crate::pac::PWR.cr1().read();
}

View File

@ -0,0 +1,41 @@
use stm32_metapac::rcc::vals::Rtcsel;
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
if !reg.rtcen() || reg.rtcsel().0 != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(Rtcsel(clock_config));
w.set_rtcen(true);
// Restore bcdr
w.set_lscosel(reg.lscosel());
w.set_lscoen(reg.lscoen());
w.set_lseon(reg.lseon());
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// enable peripheral clock for communication
crate::pac::RCC.apb1enr1().modify(|w| w.set_rtcapben(true));
// read to allow the pwr clock to enable
crate::pac::PWR.cr1().read();
}

View File

@ -0,0 +1,39 @@
pub const BACKUP_REGISTER_COUNT: usize = 20;
/// Unlock the backup domain
pub(super) unsafe fn unlock_backup_domain(clock_config: u8) {
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
let reg = crate::pac::RCC.bdcr().read();
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
if !reg.rtcen() || reg.rtcsel() != clock_config {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(clock_config);
w.set_rtcen(true);
// Restore bcdr
w.set_lscosel(reg.lscosel());
w.set_lscoen(reg.lscoen());
w.set_lseon(reg.lseon());
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
pub(crate) unsafe fn enable_peripheral_clk() {
// enable peripheral clock for communication
crate::pac::RCC.apb1enr1().modify(|w| w.set_rtcapben(true));
// read to allow the pwr clock to enable
crate::pac::PWR.cr1().read();
}

212
embassy-stm32/src/rtc/v3.rs Normal file
View File

@ -0,0 +1,212 @@
use stm32_metapac::rtc::vals::{Calp, Calw16, Calw8, Fmt, Init, Key, Osel, Pol, TampalrmPu, TampalrmType};
use super::{Instance, RtcCalibrationCyclePeriod, RtcConfig};
use crate::pac::rtc::Rtc;
impl<'d, T: Instance> super::Rtc<'d, T> {
/// Applies the RTC config
/// It this changes the RTC clock source the time will be reset
pub(super) fn apply_config(&mut self, rtc_config: RtcConfig) {
// Unlock the backup domain
unsafe {
#[cfg(feature = "stm32g0c1ve")]
{
crate::pac::PWR.cr1().modify(|w| w.set_dbp(true));
while !crate::pac::PWR.cr1().read().dbp() {}
}
#[cfg(not(feature = "stm32g0c1ve"))]
{
crate::pac::PWR
.cr1()
.modify(|w| w.set_dbp(stm32_metapac::pwr::vals::Dbp::ENABLED));
while crate::pac::PWR.cr1().read().dbp() != stm32_metapac::pwr::vals::Dbp::DISABLED {}
}
let reg = crate::pac::RCC.bdcr().read();
assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet.");
let config_rtcsel = rtc_config.clock_config as u8;
#[cfg(rtc_v3)]
#[cfg(not(any(feature = "stm32wl54jc-cm0p", feature = "stm32wle5ub", feature = "stm32g0c1ve")))]
let config_rtcsel = stm32_metapac::rtc::vals::Rtcsel(config_rtcsel);
#[cfg(feature = "stm32g0c1ve")]
let config_rtcsel = stm32_metapac::rcc::vals::Rtcsel(config_rtcsel);
if !reg.rtcen() || reg.rtcsel() != config_rtcsel {
crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true));
crate::pac::RCC.bdcr().modify(|w| {
// Reset
w.set_bdrst(false);
// Select RTC source
w.set_rtcsel(config_rtcsel);
w.set_rtcen(true);
// Restore bcdr
w.set_lscosel(reg.lscosel());
w.set_lscoen(reg.lscoen());
w.set_lseon(reg.lseon());
w.set_lsedrv(reg.lsedrv());
w.set_lsebyp(reg.lsebyp());
});
}
}
self.write(true, |rtc| {
unsafe {
rtc.cr().modify(|w| {
w.set_fmt(Fmt::TWENTYFOURHOUR);
w.set_osel(Osel::DISABLED);
w.set_pol(Pol::HIGH);
});
rtc.prer().modify(|w| {
w.set_prediv_s(rtc_config.sync_prescaler);
w.set_prediv_a(rtc_config.async_prescaler);
});
// TODO: configuration for output pins
rtc.cr().modify(|w| {
w.set_out2en(false);
w.set_tampalrm_type(TampalrmType::PUSHPULL);
w.set_tampalrm_pu(TampalrmPu::NOPULLUP);
});
}
});
self.rtc_config = rtc_config;
}
const RTC_CALR_MIN_PPM: f32 = -487.1;
const RTC_CALR_MAX_PPM: f32 = 488.5;
const RTC_CALR_RESOLUTION_PPM: f32 = 0.9537;
/// Calibrate the clock drift.
///
/// `clock_drift` can be adjusted from -487.1 ppm to 488.5 ppm and is clamped to this range.
///
/// ### Note
///
/// To perform a calibration when `async_prescaler` is less then 3, `sync_prescaler`
/// has to be reduced accordingly (see RM0351 Rev 9, sec 38.3.12).
pub fn calibrate(&mut self, mut clock_drift: f32, period: RtcCalibrationCyclePeriod) {
if clock_drift < Self::RTC_CALR_MIN_PPM {
clock_drift = Self::RTC_CALR_MIN_PPM;
} else if clock_drift > Self::RTC_CALR_MAX_PPM {
clock_drift = Self::RTC_CALR_MAX_PPM;
}
clock_drift = clock_drift / Self::RTC_CALR_RESOLUTION_PPM;
self.write(false, |rtc| {
unsafe {
rtc.calr().write(|w| {
match period {
RtcCalibrationCyclePeriod::Seconds8 => {
w.set_calw8(Calw8::EIGHTSECONDS);
}
RtcCalibrationCyclePeriod::Seconds16 => {
w.set_calw16(Calw16::SIXTEENSECONDS);
}
RtcCalibrationCyclePeriod::Seconds32 => {
// Set neither `calw8` nor `calw16` to use 32 seconds
}
}
// Extra pulses during calibration cycle period: CALP * 512 - CALM
//
// CALP sets whether pulses are added or omitted.
//
// CALM contains how many pulses (out of 512) are masked in a
// given calibration cycle period.
if clock_drift > 0.0 {
// Maximum (about 512.2) rounds to 512.
clock_drift += 0.5;
// When the offset is positive (0 to 512), the opposite of
// the offset (512 - offset) is masked, i.e. for the
// maximum offset (512), 0 pulses are masked.
w.set_calp(Calp::INCREASEFREQ);
w.set_calm(512 - clock_drift as u16);
} else {
// Minimum (about -510.7) rounds to -511.
clock_drift -= 0.5;
// When the offset is negative or zero (-511 to 0),
// the absolute offset is masked, i.e. for the minimum
// offset (-511), 511 pulses are masked.
w.set_calp(Calp::NOCHANGE);
w.set_calm((clock_drift * -1.0) as u16);
}
});
}
})
}
pub(super) fn write<F, R>(&mut self, init_mode: bool, f: F) -> R
where
F: FnOnce(&crate::pac::rtc::Rtc) -> R,
{
let r = T::regs();
// Disable write protection.
// This is safe, as we're only writin the correct and expected values.
unsafe {
r.wpr().write(|w| w.set_key(Key::DEACTIVATE1));
r.wpr().write(|w| w.set_key(Key::DEACTIVATE2));
if init_mode && !r.icsr().read().initf() {
r.icsr().modify(|w| w.set_init(Init::INITMODE));
// wait till init state entered
// ~2 RTCCLK cycles
while !r.icsr().read().initf() {}
}
}
let result = f(&r);
unsafe {
if init_mode {
r.icsr().modify(|w| w.set_init(Init::FREERUNNINGMODE)); // Exits init mode
}
// Re-enable write protection.
// This is safe, as the field accepts the full range of 8-bit values.
r.wpr().write(|w| w.set_key(Key::ACTIVATE));
}
result
}
}
pub(super) unsafe fn enable_peripheral_clk() {
// Nothing to do
}
pub const BACKUP_REGISTER_COUNT: usize = 32;
/// Read content of the backup register.
///
/// The registers retain their values during wakes from standby mode or system resets. They also
/// retain their value when Vdd is switched off as long as V_BAT is powered.
pub fn read_backup_register(_rtc: &Rtc, register: usize) -> Option<u32> {
if register < BACKUP_REGISTER_COUNT {
//Some(rtc.bkpr()[register].read().bits())
None // RTC3 backup registers come from the TAMP peripe=heral, not RTC. Not() even in the L412 PAC
} else {
None
}
}
/// Set content of the backup register.
///
/// The registers retain their values during wakes from standby mode or system resets. They also
/// retain their value when Vdd is switched off as long as V_BAT is powered.
pub fn write_backup_register(_rtc: &Rtc, register: usize, _value: u32) {
if register < BACKUP_REGISTER_COUNT {
// RTC3 backup registers come from the TAMP peripe=heral, not RTC. Not() even in the L412 PAC
//unsafe { self.rtc.bkpr()[register].write(|w| w.bits(value)) }
}
}