Merge #695
695: Simplify Channel. r=Dirbaio a=Dirbaio - Allow initializing in a static, without Forever. - Remove ability to close, since in embedded enviromnents channels usually live forever and don't get closed. - Remove MPSC restriction, it's MPMC now. Rename "mpsc" to "channel". - `Sender` and `Receiver` are still available if you want to enforce a piece of code only has send/receive access, but are optional: you can send/receive directly into the Channel if you want. Co-authored-by: Dario Nieuwenhuis <dirbaio@dirbaio.net>
This commit is contained in:
commit
c1b3822964
430
embassy/src/channel/channel.rs
Normal file
430
embassy/src/channel/channel.rs
Normal file
@ -0,0 +1,430 @@
|
||||
//! A queue for sending values between asynchronous tasks.
|
||||
//!
|
||||
//! It can be used concurrently by multiple producers (senders) and multiple
|
||||
//! consumers (receivers), i.e. it is an "MPMC channel".
|
||||
//!
|
||||
//! This queue takes a Mutex type so that various
|
||||
//! targets can be attained. For example, a ThreadModeMutex can be used
|
||||
//! for single-core Cortex-M targets where messages are only passed
|
||||
//! between tasks running in thread mode. Similarly, a CriticalSectionMutex
|
||||
//! can also be used for single-core targets where messages are to be
|
||||
//! passed from exception mode e.g. out of an interrupt handler.
|
||||
//!
|
||||
//! This module provides a bounded channel that has a limit on the number of
|
||||
//! messages that it can store, and if this limit is reached, trying to send
|
||||
//! another message will result in an error being returned.
|
||||
//!
|
||||
|
||||
use core::cell::RefCell;
|
||||
use core::pin::Pin;
|
||||
use core::task::Context;
|
||||
use core::task::Poll;
|
||||
|
||||
use futures::Future;
|
||||
use heapless::Deque;
|
||||
|
||||
use crate::blocking_mutex::raw::RawMutex;
|
||||
use crate::blocking_mutex::Mutex;
|
||||
use crate::waitqueue::WakerRegistration;
|
||||
|
||||
/// Send-only access to a [`Channel`].
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Sender<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Sender<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
/// Sends a value.
|
||||
///
|
||||
/// See [`Channel::send()`]
|
||||
pub fn send(&self, message: T) -> SendFuture<'ch, M, T, N> {
|
||||
self.channel.send(message)
|
||||
}
|
||||
|
||||
/// Attempt to immediately send a message.
|
||||
///
|
||||
/// See [`Channel::send()`]
|
||||
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
|
||||
self.channel.try_send(message)
|
||||
}
|
||||
}
|
||||
|
||||
/// Receive-only access to a [`Channel`].
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Receiver<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Receiver<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
/// Receive the next value.
|
||||
///
|
||||
/// See [`Channel::recv()`].
|
||||
pub fn recv(&self) -> RecvFuture<'_, M, T, N> {
|
||||
self.channel.recv()
|
||||
}
|
||||
|
||||
/// Attempt to immediately receive the next value.
|
||||
///
|
||||
/// See [`Channel::try_recv()`]
|
||||
pub fn try_recv(&self) -> Result<T, TryRecvError> {
|
||||
self.channel.try_recv()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct RecvFuture<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Future for RecvFuture<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
type Output = T;
|
||||
|
||||
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
|
||||
self.channel
|
||||
.lock(|c| match c.try_recv_with_context(Some(cx)) {
|
||||
Ok(v) => Poll::Ready(v),
|
||||
Err(TryRecvError::Empty) => Poll::Pending,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SendFuture<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
message: Option<T>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Future for SendFuture<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
type Output = ();
|
||||
|
||||
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
match self.message.take() {
|
||||
Some(m) => match self.channel.lock(|c| c.try_send_with_context(m, Some(cx))) {
|
||||
Ok(..) => Poll::Ready(()),
|
||||
Err(TrySendError::Full(m)) => {
|
||||
self.message = Some(m);
|
||||
Poll::Pending
|
||||
}
|
||||
},
|
||||
None => panic!("Message cannot be None"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Unpin for SendFuture<'ch, M, T, N> where M: RawMutex {}
|
||||
|
||||
/// Error returned by [`try_recv`](Channel::try_recv).
|
||||
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum TryRecvError {
|
||||
/// A message could not be received because the channel is empty.
|
||||
Empty,
|
||||
}
|
||||
|
||||
/// Error returned by [`try_send`](Channel::try_send).
|
||||
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum TrySendError<T> {
|
||||
/// The data could not be sent on the channel because the channel is
|
||||
/// currently full and sending would require blocking.
|
||||
Full(T),
|
||||
}
|
||||
|
||||
struct ChannelState<T, const N: usize> {
|
||||
queue: Deque<T, N>,
|
||||
receiver_waker: WakerRegistration,
|
||||
senders_waker: WakerRegistration,
|
||||
}
|
||||
|
||||
impl<T, const N: usize> ChannelState<T, N> {
|
||||
const fn new() -> Self {
|
||||
ChannelState {
|
||||
queue: Deque::new(),
|
||||
receiver_waker: WakerRegistration::new(),
|
||||
senders_waker: WakerRegistration::new(),
|
||||
}
|
||||
}
|
||||
|
||||
fn try_recv(&mut self) -> Result<T, TryRecvError> {
|
||||
self.try_recv_with_context(None)
|
||||
}
|
||||
|
||||
fn try_recv_with_context(&mut self, cx: Option<&mut Context<'_>>) -> Result<T, TryRecvError> {
|
||||
if self.queue.is_full() {
|
||||
self.senders_waker.wake();
|
||||
}
|
||||
|
||||
if let Some(message) = self.queue.pop_front() {
|
||||
Ok(message)
|
||||
} else {
|
||||
if let Some(cx) = cx {
|
||||
self.receiver_waker.register(cx.waker());
|
||||
}
|
||||
Err(TryRecvError::Empty)
|
||||
}
|
||||
}
|
||||
|
||||
fn try_send(&mut self, message: T) -> Result<(), TrySendError<T>> {
|
||||
self.try_send_with_context(message, None)
|
||||
}
|
||||
|
||||
fn try_send_with_context(
|
||||
&mut self,
|
||||
message: T,
|
||||
cx: Option<&mut Context<'_>>,
|
||||
) -> Result<(), TrySendError<T>> {
|
||||
match self.queue.push_back(message) {
|
||||
Ok(()) => {
|
||||
self.receiver_waker.wake();
|
||||
Ok(())
|
||||
}
|
||||
Err(message) => {
|
||||
if let Some(cx) = cx {
|
||||
self.senders_waker.register(cx.waker());
|
||||
}
|
||||
Err(TrySendError::Full(message))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A bounded channel for communicating between asynchronous tasks
|
||||
/// with backpressure.
|
||||
///
|
||||
/// The channel will buffer up to the provided number of messages. Once the
|
||||
/// buffer is full, attempts to `send` new messages will wait until a message is
|
||||
/// received from the channel.
|
||||
///
|
||||
/// All data sent will become available in the same order as it was sent.
|
||||
pub struct Channel<M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
inner: Mutex<M, RefCell<ChannelState<T, N>>>,
|
||||
}
|
||||
|
||||
impl<M, T, const N: usize> Channel<M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
/// Establish a new bounded channel. For example, to create one with a NoopMutex:
|
||||
///
|
||||
/// ```
|
||||
/// use embassy::channel::channel::Channel;
|
||||
/// use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
///
|
||||
/// // Declare a bounded channel of 3 u32s.
|
||||
/// let mut channel = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
/// ```
|
||||
#[cfg(feature = "nightly")]
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(RefCell::new(ChannelState::new())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Establish a new bounded channel. For example, to create one with a NoopMutex:
|
||||
///
|
||||
/// ```
|
||||
/// use embassy::channel::channel::Channel;
|
||||
/// use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
///
|
||||
/// // Declare a bounded channel of 3 u32s.
|
||||
/// let mut channel = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
/// ```
|
||||
#[cfg(not(feature = "nightly"))]
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(RefCell::new(ChannelState::new())),
|
||||
}
|
||||
}
|
||||
|
||||
fn lock<R>(&self, f: impl FnOnce(&mut ChannelState<T, N>) -> R) -> R {
|
||||
self.inner.lock(|rc| f(&mut *rc.borrow_mut()))
|
||||
}
|
||||
|
||||
/// Get a sender for this channel.
|
||||
pub fn sender(&self) -> Sender<'_, M, T, N> {
|
||||
Sender { channel: self }
|
||||
}
|
||||
|
||||
/// Get a receiver for this channel.
|
||||
pub fn receiver(&self) -> Receiver<'_, M, T, N> {
|
||||
Receiver { channel: self }
|
||||
}
|
||||
|
||||
/// Send a value, waiting until there is capacity.
|
||||
///
|
||||
/// Sending completes when the value has been pushed to the channel's queue.
|
||||
/// This doesn't mean the value has been received yet.
|
||||
pub fn send(&self, message: T) -> SendFuture<'_, M, T, N> {
|
||||
SendFuture {
|
||||
channel: self,
|
||||
message: Some(message),
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempt to immediately send a message.
|
||||
///
|
||||
/// This method differs from [`send`] by returning immediately if the channel's
|
||||
/// buffer is full, instead of waiting.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If the channel capacity has been reached, i.e., the channel has `n`
|
||||
/// buffered values where `n` is the argument passed to [`Channel`], then an
|
||||
/// error is returned.
|
||||
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
|
||||
self.lock(|c| c.try_send(message))
|
||||
}
|
||||
|
||||
/// Receive the next value.
|
||||
///
|
||||
/// If there are no messages in the channel's buffer, this method will
|
||||
/// wait until a message is sent.
|
||||
pub fn recv(&self) -> RecvFuture<'_, M, T, N> {
|
||||
RecvFuture { channel: self }
|
||||
}
|
||||
|
||||
/// Attempt to immediately receive a message.
|
||||
///
|
||||
/// This method will either receive a message from the channel immediately or return an error
|
||||
/// if the channel is empty.
|
||||
pub fn try_recv(&self) -> Result<T, TryRecvError> {
|
||||
self.lock(|c| c.try_recv())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use core::time::Duration;
|
||||
|
||||
use futures::task::SpawnExt;
|
||||
use futures_executor::ThreadPool;
|
||||
use futures_timer::Delay;
|
||||
|
||||
use crate::blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex};
|
||||
use crate::util::Forever;
|
||||
|
||||
use super::*;
|
||||
|
||||
fn capacity<T, const N: usize>(c: &ChannelState<T, N>) -> usize {
|
||||
c.queue.capacity() - c.queue.len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sending_once() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
assert!(c.try_send(1).is_ok());
|
||||
assert_eq!(capacity(&c), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sending_when_full() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
let _ = c.try_send(1);
|
||||
let _ = c.try_send(1);
|
||||
let _ = c.try_send(1);
|
||||
match c.try_send(2) {
|
||||
Err(TrySendError::Full(2)) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
assert_eq!(capacity(&c), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn receiving_once_with_one_send() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
assert!(c.try_send(1).is_ok());
|
||||
assert_eq!(c.try_recv().unwrap(), 1);
|
||||
assert_eq!(capacity(&c), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn receiving_when_empty() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
match c.try_recv() {
|
||||
Err(TryRecvError::Empty) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
assert_eq!(capacity(&c), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn simple_send_and_receive() {
|
||||
let c = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
assert!(c.try_send(1).is_ok());
|
||||
assert_eq!(c.try_recv().unwrap(), 1);
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn receiver_receives_given_try_send_async() {
|
||||
let executor = ThreadPool::new().unwrap();
|
||||
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 3>> = Forever::new();
|
||||
let c = &*CHANNEL.put(Channel::new());
|
||||
let c2 = c;
|
||||
assert!(executor
|
||||
.spawn(async move {
|
||||
assert!(c2.try_send(1).is_ok());
|
||||
})
|
||||
.is_ok());
|
||||
assert_eq!(c.recv().await, 1);
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn sender_send_completes_if_capacity() {
|
||||
let c = Channel::<CriticalSectionRawMutex, u32, 1>::new();
|
||||
c.send(1).await;
|
||||
assert_eq!(c.recv().await, 1);
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn senders_sends_wait_until_capacity() {
|
||||
let executor = ThreadPool::new().unwrap();
|
||||
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 1>> = Forever::new();
|
||||
let c = &*CHANNEL.put(Channel::new());
|
||||
assert!(c.try_send(1).is_ok());
|
||||
|
||||
let c2 = c;
|
||||
let send_task_1 = executor.spawn_with_handle(async move { c2.send(2).await });
|
||||
let c2 = c;
|
||||
let send_task_2 = executor.spawn_with_handle(async move { c2.send(3).await });
|
||||
// Wish I could think of a means of determining that the async send is waiting instead.
|
||||
// However, I've used the debugger to observe that the send does indeed wait.
|
||||
Delay::new(Duration::from_millis(500)).await;
|
||||
assert_eq!(c.recv().await, 1);
|
||||
assert!(executor
|
||||
.spawn(async move {
|
||||
loop {
|
||||
c.recv().await;
|
||||
}
|
||||
})
|
||||
.is_ok());
|
||||
send_task_1.unwrap().await;
|
||||
send_task_2.unwrap().await;
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
//! Async channels
|
||||
|
||||
pub mod mpsc;
|
||||
pub mod channel;
|
||||
pub mod signal;
|
||||
|
@ -1,822 +0,0 @@
|
||||
//! A multi-producer, single-consumer queue for sending values between
|
||||
//! asynchronous tasks. This queue takes a Mutex type so that various
|
||||
//! targets can be attained. For example, a ThreadModeMutex can be used
|
||||
//! for single-core Cortex-M targets where messages are only passed
|
||||
//! between tasks running in thread mode. Similarly, a CriticalSectionMutex
|
||||
//! can also be used for single-core targets where messages are to be
|
||||
//! passed from exception mode e.g. out of an interrupt handler.
|
||||
//!
|
||||
//! This module provides a bounded channel that has a limit on the number of
|
||||
//! messages that it can store, and if this limit is reached, trying to send
|
||||
//! another message will result in an error being returned.
|
||||
//!
|
||||
//! Similar to the `mpsc` channels provided by `std`, the channel constructor
|
||||
//! functions provide separate send and receive handles, [`Sender`] and
|
||||
//! [`Receiver`]. If there is no message to read, the current task will be
|
||||
//! notified when a new value is sent. [`Sender`] allows sending values into
|
||||
//! the channel. If the bounded channel is at capacity, the send is rejected.
|
||||
//!
|
||||
//! # Disconnection
|
||||
//!
|
||||
//! When all [`Sender`] handles have been dropped, it is no longer
|
||||
//! possible to send values into the channel. This is considered the termination
|
||||
//! event of the stream.
|
||||
//!
|
||||
//! If the [`Receiver`] handle is dropped, then messages can no longer
|
||||
//! be read out of the channel. In this case, all further attempts to send will
|
||||
//! result in an error.
|
||||
//!
|
||||
//! # Clean Shutdown
|
||||
//!
|
||||
//! When the [`Receiver`] is dropped, it is possible for unprocessed messages to
|
||||
//! remain in the channel. Instead, it is usually desirable to perform a "clean"
|
||||
//! shutdown. To do this, the receiver first calls `close`, which will prevent
|
||||
//! any further messages to be sent into the channel. Then, the receiver
|
||||
//! consumes the channel to completion, at which point the receiver can be
|
||||
//! dropped.
|
||||
//!
|
||||
//! This channel and its associated types were derived from <https://docs.rs/tokio/0.1.22/tokio/sync/mpsc/fn.channel.html>
|
||||
|
||||
use core::cell::RefCell;
|
||||
use core::fmt;
|
||||
use core::pin::Pin;
|
||||
use core::task::Context;
|
||||
use core::task::Poll;
|
||||
use core::task::Waker;
|
||||
|
||||
use futures::Future;
|
||||
use heapless::Deque;
|
||||
|
||||
use crate::blocking_mutex::raw::RawMutex;
|
||||
use crate::blocking_mutex::Mutex;
|
||||
use crate::waitqueue::WakerRegistration;
|
||||
|
||||
/// Send values to the associated `Receiver`.
|
||||
///
|
||||
/// Instances are created by the [`split`](split) function.
|
||||
pub struct Sender<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
/// Receive values from the associated `Sender`.
|
||||
///
|
||||
/// Instances are created by the [`split`](split) function.
|
||||
pub struct Receiver<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
/// Splits a bounded mpsc channel into a `Sender` and `Receiver`.
|
||||
///
|
||||
/// All data sent on `Sender` will become available on `Receiver` in the same
|
||||
/// order as it was sent.
|
||||
///
|
||||
/// The `Sender` can be cloned to `send` to the same channel from multiple code
|
||||
/// locations. Only one `Receiver` is valid.
|
||||
///
|
||||
/// If the `Receiver` is disconnected while trying to `send`, the `send` method
|
||||
/// will return a `SendError`. Similarly, if `Sender` is disconnected while
|
||||
/// trying to `recv`, the `recv` method will return a `RecvError`.
|
||||
///
|
||||
/// Note that when splitting the channel, the sender and receiver cannot outlive
|
||||
/// their channel. The following will therefore fail compilation:
|
||||
////
|
||||
/// ```compile_fail
|
||||
/// use embassy::channel::mpsc;
|
||||
/// use embassy::channel::mpsc::{Channel, WithThreadModeOnly};
|
||||
///
|
||||
/// let (sender, receiver) = {
|
||||
/// let mut channel = Channel::<WithThreadModeOnly, u32, 3>::with_thread_mode_only();
|
||||
/// mpsc::split(&mut channel)
|
||||
/// };
|
||||
/// ```
|
||||
pub fn split<M, T, const N: usize>(
|
||||
channel: &mut Channel<M, T, N>,
|
||||
) -> (Sender<M, T, N>, Receiver<M, T, N>)
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
let sender = Sender { channel };
|
||||
let receiver = Receiver { channel };
|
||||
channel.lock(|c| {
|
||||
c.register_receiver();
|
||||
c.register_sender();
|
||||
});
|
||||
(sender, receiver)
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Receiver<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
/// Receives the next value for this receiver.
|
||||
///
|
||||
/// This method returns `None` if the channel has been closed and there are
|
||||
/// no remaining messages in the channel's buffer. This indicates that no
|
||||
/// further values can ever be received from this `Receiver`. The channel is
|
||||
/// closed when all senders have been dropped, or when [`close`] is called.
|
||||
///
|
||||
/// If there are no messages in the channel's buffer, but the channel has
|
||||
/// not yet been closed, this method will sleep until a message is sent or
|
||||
/// the channel is closed.
|
||||
///
|
||||
/// Note that if [`close`] is called, but there are still outstanding
|
||||
/// messages from before it was closed, the channel is not considered
|
||||
/// closed by `recv` until they are all consumed.
|
||||
///
|
||||
/// [`close`]: Self::close
|
||||
pub fn recv(&mut self) -> RecvFuture<'_, M, T, N> {
|
||||
RecvFuture {
|
||||
channel: self.channel,
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to immediately receive a message on this `Receiver`
|
||||
///
|
||||
/// This method will either receive a message from the channel immediately or return an error
|
||||
/// if the channel is empty.
|
||||
pub fn try_recv(&self) -> Result<T, TryRecvError> {
|
||||
self.channel.lock(|c| c.try_recv())
|
||||
}
|
||||
|
||||
/// Closes the receiving half of a channel without dropping it.
|
||||
///
|
||||
/// This prevents any further messages from being sent on the channel while
|
||||
/// still enabling the receiver to drain messages that are buffered.
|
||||
///
|
||||
/// To guarantee that no messages are dropped, after calling `close()`,
|
||||
/// `recv()` must be called until `None` is returned. If there are
|
||||
/// outstanding messages, the `recv` method will not return `None`
|
||||
/// until those are released.
|
||||
///
|
||||
pub fn close(&mut self) {
|
||||
self.channel.lock(|c| c.close())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Drop for Receiver<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
fn drop(&mut self) {
|
||||
self.channel.lock(|c| c.deregister_receiver())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct RecvFuture<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Future for RecvFuture<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
type Output = Option<T>;
|
||||
|
||||
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<T>> {
|
||||
self.channel
|
||||
.lock(|c| match c.try_recv_with_context(Some(cx)) {
|
||||
Ok(v) => Poll::Ready(Some(v)),
|
||||
Err(TryRecvError::Closed) => Poll::Ready(None),
|
||||
Err(TryRecvError::Empty) => Poll::Pending,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Sender<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
/// Sends a value, waiting until there is capacity.
|
||||
///
|
||||
/// A successful send occurs when it is determined that the other end of the
|
||||
/// channel has not hung up already. An unsuccessful send would be one where
|
||||
/// the corresponding receiver has already been closed. Note that a return
|
||||
/// value of `Err` means that the data will never be received, but a return
|
||||
/// value of `Ok` does not mean that the data will be received. It is
|
||||
/// possible for the corresponding receiver to hang up immediately after
|
||||
/// this function returns `Ok`.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If the receive half of the channel is closed, either due to [`close`]
|
||||
/// being called or the [`Receiver`] handle dropping, the function returns
|
||||
/// an error. The error includes the value passed to `send`.
|
||||
///
|
||||
/// [`close`]: Receiver::close
|
||||
/// [`Receiver`]: Receiver
|
||||
pub fn send(&self, message: T) -> SendFuture<'ch, M, T, N> {
|
||||
SendFuture {
|
||||
channel: self.channel,
|
||||
message: Some(message),
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to immediately send a message on this `Sender`
|
||||
///
|
||||
/// This method differs from [`send`] by returning immediately if the channel's
|
||||
/// buffer is full or no receiver is waiting to acquire some data. Compared
|
||||
/// with [`send`], this function has two failure cases instead of one (one for
|
||||
/// disconnection, one for a full buffer).
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If the channel capacity has been reached, i.e., the channel has `n`
|
||||
/// buffered values where `n` is the argument passed to [`channel`], then an
|
||||
/// error is returned.
|
||||
///
|
||||
/// If the receive half of the channel is closed, either due to [`close`]
|
||||
/// being called or the [`Receiver`] handle dropping, the function returns
|
||||
/// an error. The error includes the value passed to `send`.
|
||||
///
|
||||
/// [`send`]: Sender::send
|
||||
/// [`channel`]: channel
|
||||
/// [`close`]: Receiver::close
|
||||
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
|
||||
self.channel.lock(|c| c.try_send(message))
|
||||
}
|
||||
|
||||
/// Completes when the receiver has dropped.
|
||||
///
|
||||
/// This allows the producers to get notified when interest in the produced
|
||||
/// values is canceled and immediately stop doing work.
|
||||
pub async fn closed(&self) {
|
||||
CloseFuture {
|
||||
channel: self.channel,
|
||||
}
|
||||
.await
|
||||
}
|
||||
|
||||
/// Checks if the channel has been closed. This happens when the
|
||||
/// [`Receiver`] is dropped, or when the [`Receiver::close`] method is
|
||||
/// called.
|
||||
///
|
||||
/// [`Receiver`]: Receiver
|
||||
/// [`Receiver::close`]: Receiver::close
|
||||
pub fn is_closed(&self) -> bool {
|
||||
self.channel.lock(|c| c.is_closed())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SendFuture<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
message: Option<T>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Future for SendFuture<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
type Output = Result<(), SendError<T>>;
|
||||
|
||||
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
match self.message.take() {
|
||||
Some(m) => match self.channel.lock(|c| c.try_send_with_context(m, Some(cx))) {
|
||||
Ok(..) => Poll::Ready(Ok(())),
|
||||
Err(TrySendError::Closed(m)) => Poll::Ready(Err(SendError(m))),
|
||||
Err(TrySendError::Full(m)) => {
|
||||
self.message = Some(m);
|
||||
Poll::Pending
|
||||
}
|
||||
},
|
||||
None => panic!("Message cannot be None"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Unpin for SendFuture<'ch, M, T, N> where M: RawMutex {}
|
||||
|
||||
struct CloseFuture<'ch, M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
channel: &'ch Channel<M, T, N>,
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Future for CloseFuture<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
type Output = ();
|
||||
|
||||
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
if self.channel.lock(|c| c.is_closed_with_context(Some(cx))) {
|
||||
Poll::Ready(())
|
||||
} else {
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Drop for Sender<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
fn drop(&mut self) {
|
||||
self.channel.lock(|c| c.deregister_sender())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ch, M, T, const N: usize> Clone for Sender<'ch, M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
fn clone(&self) -> Self {
|
||||
self.channel.lock(|c| c.register_sender());
|
||||
Sender {
|
||||
channel: self.channel,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An error returned from the [`try_recv`] method.
|
||||
///
|
||||
/// [`try_recv`]: Receiver::try_recv
|
||||
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum TryRecvError {
|
||||
/// A message could not be received because the channel is empty.
|
||||
Empty,
|
||||
|
||||
/// The message could not be received because the channel is empty and closed.
|
||||
Closed,
|
||||
}
|
||||
|
||||
/// Error returned by the `Sender`.
|
||||
#[derive(Debug)]
|
||||
pub struct SendError<T>(pub T);
|
||||
|
||||
impl<T> fmt::Display for SendError<T> {
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(fmt, "channel closed")
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "defmt")]
|
||||
impl<T> defmt::Format for SendError<T> {
|
||||
fn format(&self, fmt: defmt::Formatter<'_>) {
|
||||
defmt::write!(fmt, "channel closed")
|
||||
}
|
||||
}
|
||||
|
||||
/// This enumeration is the list of the possible error outcomes for the
|
||||
/// [try_send](Sender::try_send) method.
|
||||
#[derive(Debug)]
|
||||
pub enum TrySendError<T> {
|
||||
/// The data could not be sent on the channel because the channel is
|
||||
/// currently full and sending would require blocking.
|
||||
Full(T),
|
||||
|
||||
/// The receive half of the channel was explicitly closed or has been
|
||||
/// dropped.
|
||||
Closed(T),
|
||||
}
|
||||
|
||||
impl<T> fmt::Display for TrySendError<T> {
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(
|
||||
fmt,
|
||||
"{}",
|
||||
match self {
|
||||
TrySendError::Full(..) => "no available capacity",
|
||||
TrySendError::Closed(..) => "channel closed",
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "defmt")]
|
||||
impl<T> defmt::Format for TrySendError<T> {
|
||||
fn format(&self, fmt: defmt::Formatter<'_>) {
|
||||
match self {
|
||||
TrySendError::Full(..) => defmt::write!(fmt, "no available capacity"),
|
||||
TrySendError::Closed(..) => defmt::write!(fmt, "channel closed"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct ChannelState<T, const N: usize> {
|
||||
queue: Deque<T, N>,
|
||||
closed: bool,
|
||||
receiver_registered: bool,
|
||||
senders_registered: u32,
|
||||
receiver_waker: WakerRegistration,
|
||||
senders_waker: WakerRegistration,
|
||||
}
|
||||
|
||||
impl<T, const N: usize> ChannelState<T, N> {
|
||||
const fn new() -> Self {
|
||||
ChannelState {
|
||||
queue: Deque::new(),
|
||||
closed: false,
|
||||
receiver_registered: false,
|
||||
senders_registered: 0,
|
||||
receiver_waker: WakerRegistration::new(),
|
||||
senders_waker: WakerRegistration::new(),
|
||||
}
|
||||
}
|
||||
|
||||
fn try_recv(&mut self) -> Result<T, TryRecvError> {
|
||||
self.try_recv_with_context(None)
|
||||
}
|
||||
|
||||
fn try_recv_with_context(&mut self, cx: Option<&mut Context<'_>>) -> Result<T, TryRecvError> {
|
||||
if self.queue.is_full() {
|
||||
self.senders_waker.wake();
|
||||
}
|
||||
|
||||
if let Some(message) = self.queue.pop_front() {
|
||||
Ok(message)
|
||||
} else if !self.closed {
|
||||
if let Some(cx) = cx {
|
||||
self.set_receiver_waker(cx.waker());
|
||||
}
|
||||
Err(TryRecvError::Empty)
|
||||
} else {
|
||||
Err(TryRecvError::Closed)
|
||||
}
|
||||
}
|
||||
|
||||
fn try_send(&mut self, message: T) -> Result<(), TrySendError<T>> {
|
||||
self.try_send_with_context(message, None)
|
||||
}
|
||||
|
||||
fn try_send_with_context(
|
||||
&mut self,
|
||||
message: T,
|
||||
cx: Option<&mut Context<'_>>,
|
||||
) -> Result<(), TrySendError<T>> {
|
||||
if self.closed {
|
||||
return Err(TrySendError::Closed(message));
|
||||
}
|
||||
|
||||
match self.queue.push_back(message) {
|
||||
Ok(()) => {
|
||||
self.receiver_waker.wake();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
Err(message) => {
|
||||
cx.into_iter()
|
||||
.for_each(|cx| self.set_senders_waker(cx.waker()));
|
||||
Err(TrySendError::Full(message))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn close(&mut self) {
|
||||
self.receiver_waker.wake();
|
||||
self.closed = true;
|
||||
}
|
||||
|
||||
fn is_closed(&mut self) -> bool {
|
||||
self.is_closed_with_context(None)
|
||||
}
|
||||
|
||||
fn is_closed_with_context(&mut self, cx: Option<&mut Context<'_>>) -> bool {
|
||||
if self.closed {
|
||||
cx.into_iter()
|
||||
.for_each(|cx| self.set_senders_waker(cx.waker()));
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
fn register_receiver(&mut self) {
|
||||
assert!(!self.receiver_registered);
|
||||
self.receiver_registered = true;
|
||||
}
|
||||
|
||||
fn deregister_receiver(&mut self) {
|
||||
if self.receiver_registered {
|
||||
self.closed = true;
|
||||
self.senders_waker.wake();
|
||||
}
|
||||
self.receiver_registered = false;
|
||||
}
|
||||
|
||||
fn register_sender(&mut self) {
|
||||
self.senders_registered += 1;
|
||||
}
|
||||
|
||||
fn deregister_sender(&mut self) {
|
||||
assert!(self.senders_registered > 0);
|
||||
self.senders_registered -= 1;
|
||||
if self.senders_registered == 0 {
|
||||
self.receiver_waker.wake();
|
||||
self.closed = true;
|
||||
}
|
||||
}
|
||||
|
||||
fn set_receiver_waker(&mut self, receiver_waker: &Waker) {
|
||||
self.receiver_waker.register(receiver_waker);
|
||||
}
|
||||
|
||||
fn set_senders_waker(&mut self, senders_waker: &Waker) {
|
||||
// Dispose of any existing sender causing them to be polled again.
|
||||
// This could cause a spin given multiple concurrent senders, however given that
|
||||
// most sends only block waiting for the receiver to become active, this should
|
||||
// be a short-lived activity. The upside is a greatly simplified implementation
|
||||
// that avoids the need for intrusive linked-lists and unsafe operations on pinned
|
||||
// pointers.
|
||||
self.senders_waker.wake();
|
||||
self.senders_waker.register(senders_waker);
|
||||
}
|
||||
}
|
||||
|
||||
/// A a bounded mpsc channel for communicating between asynchronous tasks
|
||||
/// with backpressure.
|
||||
///
|
||||
/// The channel will buffer up to the provided number of messages. Once the
|
||||
/// buffer is full, attempts to `send` new messages will wait until a message is
|
||||
/// received from the channel.
|
||||
///
|
||||
/// All data sent will become available in the same order as it was sent.
|
||||
pub struct Channel<M, T, const N: usize>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
inner: Mutex<M, RefCell<ChannelState<T, N>>>,
|
||||
}
|
||||
|
||||
impl<M, T, const N: usize> Channel<M, T, N>
|
||||
where
|
||||
M: RawMutex,
|
||||
{
|
||||
/// Establish a new bounded channel. For example, to create one with a NoopMutex:
|
||||
///
|
||||
/// ```
|
||||
/// use embassy::channel::mpsc;
|
||||
/// use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
/// use embassy::channel::mpsc::Channel;
|
||||
///
|
||||
/// // Declare a bounded channel of 3 u32s.
|
||||
/// let mut channel = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
/// // once we have a channel, obtain its sender and receiver
|
||||
/// let (sender, receiver) = mpsc::split(&mut channel);
|
||||
/// ```
|
||||
#[cfg(feature = "nightly")]
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(RefCell::new(ChannelState::new())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Establish a new bounded channel. For example, to create one with a NoopMutex:
|
||||
///
|
||||
/// ```
|
||||
/// use embassy::channel::mpsc;
|
||||
/// use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
/// use embassy::channel::mpsc::Channel;
|
||||
///
|
||||
/// // Declare a bounded channel of 3 u32s.
|
||||
/// let mut channel = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
/// // once we have a channel, obtain its sender and receiver
|
||||
/// let (sender, receiver) = mpsc::split(&mut channel);
|
||||
/// ```
|
||||
#[cfg(not(feature = "nightly"))]
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(RefCell::new(ChannelState::new())),
|
||||
}
|
||||
}
|
||||
|
||||
fn lock<R>(&self, f: impl FnOnce(&mut ChannelState<T, N>) -> R) -> R {
|
||||
self.inner.lock(|rc| f(&mut *rc.borrow_mut()))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use core::time::Duration;
|
||||
|
||||
use futures::task::SpawnExt;
|
||||
use futures_executor::ThreadPool;
|
||||
use futures_timer::Delay;
|
||||
|
||||
use crate::blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex};
|
||||
use crate::util::Forever;
|
||||
|
||||
use super::*;
|
||||
|
||||
fn capacity<T, const N: usize>(c: &ChannelState<T, N>) -> usize {
|
||||
c.queue.capacity() - c.queue.len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sending_once() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
assert!(c.try_send(1).is_ok());
|
||||
assert_eq!(capacity(&c), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sending_when_full() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
let _ = c.try_send(1);
|
||||
let _ = c.try_send(1);
|
||||
let _ = c.try_send(1);
|
||||
match c.try_send(2) {
|
||||
Err(TrySendError::Full(2)) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
assert_eq!(capacity(&c), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sending_when_closed() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
c.closed = true;
|
||||
match c.try_send(2) {
|
||||
Err(TrySendError::Closed(2)) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn receiving_once_with_one_send() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
assert!(c.try_send(1).is_ok());
|
||||
assert_eq!(c.try_recv().unwrap(), 1);
|
||||
assert_eq!(capacity(&c), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn receiving_when_empty() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
match c.try_recv() {
|
||||
Err(TryRecvError::Empty) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
assert_eq!(capacity(&c), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn receiving_when_closed() {
|
||||
let mut c = ChannelState::<u32, 3>::new();
|
||||
c.closed = true;
|
||||
match c.try_recv() {
|
||||
Err(TryRecvError::Closed) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn simple_send_and_receive() {
|
||||
let mut c = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
let (s, r) = split(&mut c);
|
||||
assert!(s.clone().try_send(1).is_ok());
|
||||
assert_eq!(r.try_recv().unwrap(), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_close_without_sender() {
|
||||
let mut c = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
let (s, r) = split(&mut c);
|
||||
drop(s);
|
||||
match r.try_recv() {
|
||||
Err(TryRecvError::Closed) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_close_once_drained() {
|
||||
let mut c = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
let (s, r) = split(&mut c);
|
||||
assert!(s.try_send(1).is_ok());
|
||||
drop(s);
|
||||
assert_eq!(r.try_recv().unwrap(), 1);
|
||||
match r.try_recv() {
|
||||
Err(TryRecvError::Closed) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_reject_send_when_receiver_dropped() {
|
||||
let mut c = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
let (s, r) = split(&mut c);
|
||||
drop(r);
|
||||
match s.try_send(1) {
|
||||
Err(TrySendError::Closed(1)) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_reject_send_when_channel_closed() {
|
||||
let mut c = Channel::<NoopRawMutex, u32, 3>::new();
|
||||
let (s, mut r) = split(&mut c);
|
||||
assert!(s.try_send(1).is_ok());
|
||||
r.close();
|
||||
assert_eq!(r.try_recv().unwrap(), 1);
|
||||
match r.try_recv() {
|
||||
Err(TryRecvError::Closed) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
assert!(s.is_closed());
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn receiver_closes_when_sender_dropped_async() {
|
||||
let executor = ThreadPool::new().unwrap();
|
||||
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 3>> = Forever::new();
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, mut r) = split(c);
|
||||
assert!(executor
|
||||
.spawn(async move {
|
||||
drop(s);
|
||||
})
|
||||
.is_ok());
|
||||
assert_eq!(r.recv().await, None);
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn receiver_receives_given_try_send_async() {
|
||||
let executor = ThreadPool::new().unwrap();
|
||||
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 3>> = Forever::new();
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, mut r) = split(c);
|
||||
assert!(executor
|
||||
.spawn(async move {
|
||||
assert!(s.try_send(1).is_ok());
|
||||
})
|
||||
.is_ok());
|
||||
assert_eq!(r.recv().await, Some(1));
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn sender_send_completes_if_capacity() {
|
||||
let mut c = Channel::<CriticalSectionRawMutex, u32, 1>::new();
|
||||
let (s, mut r) = split(&mut c);
|
||||
assert!(s.send(1).await.is_ok());
|
||||
assert_eq!(r.recv().await, Some(1));
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn sender_send_completes_if_closed() {
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 1>> = Forever::new();
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, r) = split(c);
|
||||
drop(r);
|
||||
match s.send(1).await {
|
||||
Err(SendError(1)) => assert!(true),
|
||||
_ => assert!(false),
|
||||
}
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn senders_sends_wait_until_capacity() {
|
||||
let executor = ThreadPool::new().unwrap();
|
||||
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 1>> = Forever::new();
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s0, mut r) = split(c);
|
||||
assert!(s0.try_send(1).is_ok());
|
||||
let s1 = s0.clone();
|
||||
let send_task_1 = executor.spawn_with_handle(async move { s0.send(2).await });
|
||||
let send_task_2 = executor.spawn_with_handle(async move { s1.send(3).await });
|
||||
// Wish I could think of a means of determining that the async send is waiting instead.
|
||||
// However, I've used the debugger to observe that the send does indeed wait.
|
||||
Delay::new(Duration::from_millis(500)).await;
|
||||
assert_eq!(r.recv().await, Some(1));
|
||||
assert!(executor
|
||||
.spawn(async move { while let Some(_) = r.recv().await {} })
|
||||
.is_ok());
|
||||
assert!(send_task_1.unwrap().await.is_ok());
|
||||
assert!(send_task_2.unwrap().await.is_ok());
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn sender_close_completes_if_closing() {
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 1>> = Forever::new();
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, mut r) = split(c);
|
||||
r.close();
|
||||
s.closed().await;
|
||||
}
|
||||
|
||||
#[futures_test::test]
|
||||
async fn sender_close_completes_if_closed() {
|
||||
static CHANNEL: Forever<Channel<CriticalSectionRawMutex, u32, 1>> = Forever::new();
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, r) = split(c);
|
||||
drop(r);
|
||||
s.closed().await;
|
||||
}
|
||||
}
|
@ -5,7 +5,7 @@ use core::task::{Context, Poll, Waker};
|
||||
|
||||
/// Synchronization primitive. Allows creating awaitable signals that may be passed between tasks.
|
||||
/// For a simple use-case where the receiver is only ever interested in the latest value of
|
||||
/// something, Signals work well. For more advanced use cases, please consider [crate::channel::mpsc].
|
||||
/// something, Signals work well. For more advanced use cases, you might want to use [`Channel`](crate::channel::channel::Channel) instead..
|
||||
///
|
||||
/// Signals are generally declared as being a static const and then borrowed as required.
|
||||
///
|
||||
|
45
examples/nrf/src/bin/channel.rs
Normal file
45
examples/nrf/src/bin/channel.rs
Normal file
@ -0,0 +1,45 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::unwrap;
|
||||
use embassy::blocking_mutex::raw::ThreadModeRawMutex;
|
||||
use embassy::channel::channel::Channel;
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::time::{Duration, Timer};
|
||||
use embassy_nrf::gpio::{Level, Output, OutputDrive};
|
||||
use embassy_nrf::Peripherals;
|
||||
|
||||
use defmt_rtt as _; // global logger
|
||||
use panic_probe as _;
|
||||
|
||||
enum LedState {
|
||||
On,
|
||||
Off,
|
||||
}
|
||||
|
||||
static CHANNEL: Channel<ThreadModeRawMutex, LedState, 1> = Channel::new();
|
||||
|
||||
#[embassy::task]
|
||||
async fn my_task() {
|
||||
loop {
|
||||
CHANNEL.send(LedState::On).await;
|
||||
Timer::after(Duration::from_secs(1)).await;
|
||||
CHANNEL.send(LedState::Off).await;
|
||||
Timer::after(Duration::from_secs(1)).await;
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::main]
|
||||
async fn main(spawner: Spawner, p: Peripherals) {
|
||||
let mut led = Output::new(p.P0_13, Level::Low, OutputDrive::Standard);
|
||||
|
||||
unwrap!(spawner.spawn(my_task()));
|
||||
|
||||
loop {
|
||||
match CHANNEL.recv().await {
|
||||
LedState::On => led.set_high(),
|
||||
LedState::Off => led.set_low(),
|
||||
}
|
||||
}
|
||||
}
|
52
examples/nrf/src/bin/channel_sender_receiver.rs
Normal file
52
examples/nrf/src/bin/channel_sender_receiver.rs
Normal file
@ -0,0 +1,52 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::unwrap;
|
||||
use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
use embassy::channel::channel::{Channel, Receiver, Sender};
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::time::{Duration, Timer};
|
||||
use embassy::util::Forever;
|
||||
use embassy_nrf::gpio::{AnyPin, Level, Output, OutputDrive, Pin};
|
||||
use embassy_nrf::Peripherals;
|
||||
|
||||
use defmt_rtt as _; // global logger
|
||||
use panic_probe as _;
|
||||
|
||||
enum LedState {
|
||||
On,
|
||||
Off,
|
||||
}
|
||||
|
||||
static CHANNEL: Forever<Channel<NoopRawMutex, LedState, 1>> = Forever::new();
|
||||
|
||||
#[embassy::task]
|
||||
async fn send_task(sender: Sender<'static, NoopRawMutex, LedState, 1>) {
|
||||
loop {
|
||||
sender.send(LedState::On).await;
|
||||
Timer::after(Duration::from_secs(1)).await;
|
||||
sender.send(LedState::Off).await;
|
||||
Timer::after(Duration::from_secs(1)).await;
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::task]
|
||||
async fn recv_task(led: AnyPin, receiver: Receiver<'static, NoopRawMutex, LedState, 1>) {
|
||||
let mut led = Output::new(led, Level::Low, OutputDrive::Standard);
|
||||
|
||||
loop {
|
||||
match receiver.recv().await {
|
||||
LedState::On => led.set_high(),
|
||||
LedState::Off => led.set_low(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::main]
|
||||
async fn main(spawner: Spawner, p: Peripherals) {
|
||||
let channel = CHANNEL.put(Channel::new());
|
||||
|
||||
unwrap!(spawner.spawn(send_task(channel.sender())));
|
||||
unwrap!(spawner.spawn(recv_task(p.P0_13.degrade(), channel.receiver())));
|
||||
}
|
@ -1,60 +0,0 @@
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::unwrap;
|
||||
use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
use embassy::channel::mpsc::{self, Channel, Sender, TryRecvError};
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::time::{Duration, Timer};
|
||||
use embassy::util::Forever;
|
||||
use embassy_nrf::gpio::{Level, Output, OutputDrive};
|
||||
use embassy_nrf::Peripherals;
|
||||
|
||||
use defmt_rtt as _; // global logger
|
||||
use panic_probe as _;
|
||||
|
||||
enum LedState {
|
||||
On,
|
||||
Off,
|
||||
}
|
||||
|
||||
static CHANNEL: Forever<Channel<NoopRawMutex, LedState, 1>> = Forever::new();
|
||||
|
||||
#[embassy::task(pool_size = 1)]
|
||||
async fn my_task(sender: Sender<'static, NoopRawMutex, LedState, 1>) {
|
||||
loop {
|
||||
let _ = sender.send(LedState::On).await;
|
||||
Timer::after(Duration::from_secs(1)).await;
|
||||
let _ = sender.send(LedState::Off).await;
|
||||
Timer::after(Duration::from_secs(1)).await;
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::main]
|
||||
async fn main(spawner: Spawner, p: Peripherals) {
|
||||
let mut led = Output::new(p.P0_13, Level::Low, OutputDrive::Standard);
|
||||
|
||||
let channel = CHANNEL.put(Channel::new());
|
||||
let (sender, mut receiver) = mpsc::split(channel);
|
||||
|
||||
unwrap!(spawner.spawn(my_task(sender)));
|
||||
|
||||
// We could just loop on `receiver.recv()` for simplicity. The code below
|
||||
// is optimized to drain the queue as fast as possible in the spirit of
|
||||
// handling events as fast as possible. This optimization is benign when in
|
||||
// thread mode, but can be useful when interrupts are sending messages
|
||||
// with the channel having been created via with_critical_sections.
|
||||
loop {
|
||||
let maybe_message = match receiver.try_recv() {
|
||||
m @ Ok(..) => m.ok(),
|
||||
Err(TryRecvError::Empty) => receiver.recv().await,
|
||||
Err(TryRecvError::Closed) => break,
|
||||
};
|
||||
match maybe_message {
|
||||
Some(LedState::On) => led.set_high(),
|
||||
Some(LedState::Off) => led.set_low(),
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
}
|
@ -3,10 +3,9 @@
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::*;
|
||||
use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
use embassy::channel::mpsc::{self, Channel, Sender};
|
||||
use embassy::blocking_mutex::raw::ThreadModeRawMutex;
|
||||
use embassy::channel::channel::Channel;
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::util::Forever;
|
||||
use embassy_nrf::peripherals::UARTE0;
|
||||
use embassy_nrf::uarte::UarteRx;
|
||||
use embassy_nrf::{interrupt, uarte, Peripherals};
|
||||
@ -14,7 +13,7 @@ use embassy_nrf::{interrupt, uarte, Peripherals};
|
||||
use defmt_rtt as _; // global logger
|
||||
use panic_probe as _;
|
||||
|
||||
static CHANNEL: Forever<Channel<NoopRawMutex, [u8; 8], 1>> = Forever::new();
|
||||
static CHANNEL: Channel<ThreadModeRawMutex, [u8; 8], 1> = Channel::new();
|
||||
|
||||
#[embassy::main]
|
||||
async fn main(spawner: Spawner, p: Peripherals) {
|
||||
@ -26,14 +25,11 @@ async fn main(spawner: Spawner, p: Peripherals) {
|
||||
let uart = uarte::Uarte::new(p.UARTE0, irq, p.P0_08, p.P0_06, config);
|
||||
let (mut tx, rx) = uart.split();
|
||||
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, mut r) = mpsc::split(c);
|
||||
|
||||
info!("uarte initialized!");
|
||||
|
||||
// Spawn a task responsible purely for reading
|
||||
|
||||
unwrap!(spawner.spawn(reader(rx, s)));
|
||||
unwrap!(spawner.spawn(reader(rx)));
|
||||
|
||||
// Message must be in SRAM
|
||||
{
|
||||
@ -48,19 +44,18 @@ async fn main(spawner: Spawner, p: Peripherals) {
|
||||
// back out the buffer we receive from the read
|
||||
// task.
|
||||
loop {
|
||||
if let Some(buf) = r.recv().await {
|
||||
let buf = CHANNEL.recv().await;
|
||||
info!("writing...");
|
||||
unwrap!(tx.write(&buf).await);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::task]
|
||||
async fn reader(mut rx: UarteRx<'static, UARTE0>, s: Sender<'static, NoopRawMutex, [u8; 8], 1>) {
|
||||
async fn reader(mut rx: UarteRx<'static, UARTE0>) {
|
||||
let mut buf = [0; 8];
|
||||
loop {
|
||||
info!("reading...");
|
||||
unwrap!(rx.read(&mut buf).await);
|
||||
unwrap!(s.send(buf).await);
|
||||
CHANNEL.send(buf).await;
|
||||
}
|
||||
}
|
||||
|
@ -11,11 +11,10 @@
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::*;
|
||||
use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
use embassy::channel::mpsc::{self, Channel, Receiver, Sender};
|
||||
use embassy::blocking_mutex::raw::ThreadModeRawMutex;
|
||||
use embassy::channel::channel::Channel;
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::time::{with_timeout, Duration, Timer};
|
||||
use embassy::util::Forever;
|
||||
use embassy_stm32::exti::ExtiInput;
|
||||
use embassy_stm32::gpio::{AnyPin, Input, Level, Output, Pin, Pull, Speed};
|
||||
use embassy_stm32::peripherals::PA0;
|
||||
@ -51,14 +50,15 @@ impl<'a> Leds<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
async fn show(&mut self, queue: &mut Receiver<'static, NoopRawMutex, ButtonEvent, 4>) {
|
||||
async fn show(&mut self) {
|
||||
self.leds[self.current_led].set_high();
|
||||
if let Ok(new_message) = with_timeout(Duration::from_millis(500), queue.recv()).await {
|
||||
if let Ok(new_message) = with_timeout(Duration::from_millis(500), CHANNEL.recv()).await {
|
||||
self.leds[self.current_led].set_low();
|
||||
self.process_event(new_message).await;
|
||||
} else {
|
||||
self.leds[self.current_led].set_low();
|
||||
if let Ok(new_message) = with_timeout(Duration::from_millis(200), queue.recv()).await {
|
||||
if let Ok(new_message) = with_timeout(Duration::from_millis(200), CHANNEL.recv()).await
|
||||
{
|
||||
self.process_event(new_message).await;
|
||||
}
|
||||
}
|
||||
@ -77,15 +77,18 @@ impl<'a> Leds<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
async fn process_event(&mut self, event: Option<ButtonEvent>) {
|
||||
async fn process_event(&mut self, event: ButtonEvent) {
|
||||
match event {
|
||||
Some(ButtonEvent::SingleClick) => self.move_next(),
|
||||
Some(ButtonEvent::DoubleClick) => {
|
||||
self.change_direction();
|
||||
self.move_next()
|
||||
ButtonEvent::SingleClick => {
|
||||
self.move_next();
|
||||
}
|
||||
ButtonEvent::DoubleClick => {
|
||||
self.change_direction();
|
||||
self.move_next();
|
||||
}
|
||||
ButtonEvent::Hold => {
|
||||
self.flash().await;
|
||||
}
|
||||
Some(ButtonEvent::Hold) => self.flash().await,
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -97,7 +100,7 @@ enum ButtonEvent {
|
||||
Hold,
|
||||
}
|
||||
|
||||
static BUTTON_EVENTS_QUEUE: Forever<Channel<NoopRawMutex, ButtonEvent, 4>> = Forever::new();
|
||||
static CHANNEL: Channel<ThreadModeRawMutex, ButtonEvent, 4> = Channel::new();
|
||||
|
||||
#[embassy::main]
|
||||
async fn main(spawner: Spawner, p: Peripherals) {
|
||||
@ -116,27 +119,19 @@ async fn main(spawner: Spawner, p: Peripherals) {
|
||||
];
|
||||
let leds = Leds::new(leds);
|
||||
|
||||
let buttons_queue = BUTTON_EVENTS_QUEUE.put(Channel::new());
|
||||
let (sender, receiver) = mpsc::split(buttons_queue);
|
||||
spawner.spawn(button_waiter(button, sender)).unwrap();
|
||||
spawner.spawn(led_blinker(leds, receiver)).unwrap();
|
||||
spawner.spawn(button_waiter(button)).unwrap();
|
||||
spawner.spawn(led_blinker(leds)).unwrap();
|
||||
}
|
||||
|
||||
#[embassy::task]
|
||||
async fn led_blinker(
|
||||
mut leds: Leds<'static>,
|
||||
mut queue: Receiver<'static, NoopRawMutex, ButtonEvent, 4>,
|
||||
) {
|
||||
async fn led_blinker(mut leds: Leds<'static>) {
|
||||
loop {
|
||||
leds.show(&mut queue).await;
|
||||
leds.show().await;
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::task]
|
||||
async fn button_waiter(
|
||||
mut button: ExtiInput<'static, PA0>,
|
||||
queue: Sender<'static, NoopRawMutex, ButtonEvent, 4>,
|
||||
) {
|
||||
async fn button_waiter(mut button: ExtiInput<'static, PA0>) {
|
||||
const DOUBLE_CLICK_DELAY: u64 = 250;
|
||||
const HOLD_DELAY: u64 = 1000;
|
||||
|
||||
@ -150,9 +145,7 @@ async fn button_waiter(
|
||||
.is_err()
|
||||
{
|
||||
info!("Hold");
|
||||
if queue.send(ButtonEvent::Hold).await.is_err() {
|
||||
break;
|
||||
}
|
||||
CHANNEL.send(ButtonEvent::Hold).await;
|
||||
button.wait_for_falling_edge().await;
|
||||
} else if with_timeout(
|
||||
Duration::from_millis(DOUBLE_CLICK_DELAY),
|
||||
@ -161,15 +154,11 @@ async fn button_waiter(
|
||||
.await
|
||||
.is_err()
|
||||
{
|
||||
if queue.send(ButtonEvent::SingleClick).await.is_err() {
|
||||
break;
|
||||
}
|
||||
info!("Single click");
|
||||
CHANNEL.send(ButtonEvent::SingleClick).await;
|
||||
} else {
|
||||
info!("Double click");
|
||||
if queue.send(ButtonEvent::DoubleClick).await.is_err() {
|
||||
break;
|
||||
}
|
||||
CHANNEL.send(ButtonEvent::DoubleClick).await;
|
||||
button.wait_for_falling_edge().await;
|
||||
}
|
||||
button.wait_for_rising_edge().await;
|
||||
|
@ -4,10 +4,9 @@
|
||||
|
||||
use defmt::*;
|
||||
use defmt_rtt as _; // global logger
|
||||
use embassy::blocking_mutex::raw::NoopRawMutex;
|
||||
use embassy::channel::mpsc::{self, Channel, Sender};
|
||||
use embassy::blocking_mutex::raw::ThreadModeRawMutex;
|
||||
use embassy::channel::channel::Channel;
|
||||
use embassy::executor::Spawner;
|
||||
use embassy::util::Forever;
|
||||
use embassy_stm32::dma::NoDma;
|
||||
use embassy_stm32::{
|
||||
peripherals::{DMA1_CH1, UART7},
|
||||
@ -28,7 +27,7 @@ async fn writer(mut usart: Uart<'static, UART7, NoDma, NoDma>) {
|
||||
}
|
||||
}
|
||||
|
||||
static CHANNEL: Forever<Channel<NoopRawMutex, [u8; 8], 1>> = Forever::new();
|
||||
static CHANNEL: Channel<ThreadModeRawMutex, [u8; 8], 1> = Channel::new();
|
||||
|
||||
#[embassy::main]
|
||||
async fn main(spawner: Spawner, p: Peripherals) -> ! {
|
||||
@ -40,28 +39,21 @@ async fn main(spawner: Spawner, p: Peripherals) -> ! {
|
||||
|
||||
let (mut tx, rx) = usart.split();
|
||||
|
||||
let c = CHANNEL.put(Channel::new());
|
||||
let (s, mut r) = mpsc::split(c);
|
||||
|
||||
unwrap!(spawner.spawn(reader(rx, s)));
|
||||
unwrap!(spawner.spawn(reader(rx)));
|
||||
|
||||
loop {
|
||||
if let Some(buf) = r.recv().await {
|
||||
let buf = CHANNEL.recv().await;
|
||||
info!("writing...");
|
||||
unwrap!(tx.write(&buf).await);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy::task]
|
||||
async fn reader(
|
||||
mut rx: UartRx<'static, UART7, DMA1_CH1>,
|
||||
s: Sender<'static, NoopRawMutex, [u8; 8], 1>,
|
||||
) {
|
||||
async fn reader(mut rx: UartRx<'static, UART7, DMA1_CH1>) {
|
||||
let mut buf = [0; 8];
|
||||
loop {
|
||||
info!("reading...");
|
||||
unwrap!(rx.read(&mut buf).await);
|
||||
unwrap!(s.send(buf).await);
|
||||
CHANNEL.send(buf).await;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user