Pause CORE1 execution during flash operations
This commit is contained in:
parent
96d6c7243b
commit
eb1d2e1295
@ -6,6 +6,7 @@ use embedded_storage::nor_flash::{
|
||||
ReadNorFlash,
|
||||
};
|
||||
|
||||
use crate::pac;
|
||||
use crate::peripherals::FLASH;
|
||||
|
||||
pub const FLASH_BASE: usize = 0x10000000;
|
||||
@ -28,6 +29,7 @@ pub enum Error {
|
||||
OutOfBounds,
|
||||
/// Unaligned operation or using unaligned buffers.
|
||||
Unaligned,
|
||||
InvalidCore,
|
||||
Other,
|
||||
}
|
||||
|
||||
@ -46,7 +48,7 @@ impl NorFlashError for Error {
|
||||
match self {
|
||||
Self::OutOfBounds => NorFlashErrorKind::OutOfBounds,
|
||||
Self::Unaligned => NorFlashErrorKind::NotAligned,
|
||||
Self::Other => NorFlashErrorKind::Other,
|
||||
_ => NorFlashErrorKind::Other,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -87,7 +89,7 @@ impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
|
||||
|
||||
let len = to - from;
|
||||
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_erase(from, len, true)) };
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_erase(from, len, true))? };
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -112,7 +114,7 @@ impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
|
||||
|
||||
let unaligned_offset = offset as usize - start;
|
||||
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(unaligned_offset as u32, &pad_buf, true)) }
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(unaligned_offset as u32, &pad_buf, true))? }
|
||||
}
|
||||
|
||||
let remaining_len = bytes.len() - start_padding;
|
||||
@ -130,12 +132,12 @@ impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
|
||||
if bytes.as_ptr() as usize >= 0x2000_0000 {
|
||||
let aligned_data = &bytes[start_padding..end_padding];
|
||||
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(aligned_offset as u32, aligned_data, true)) }
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(aligned_offset as u32, aligned_data, true))? }
|
||||
} else {
|
||||
for chunk in bytes[start_padding..end_padding].chunks_exact(PAGE_SIZE) {
|
||||
let mut ram_buf = [0xFF_u8; PAGE_SIZE];
|
||||
ram_buf.copy_from_slice(chunk);
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(aligned_offset as u32, &ram_buf, true)) }
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(aligned_offset as u32, &ram_buf, true))? }
|
||||
aligned_offset += PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
@ -150,7 +152,7 @@ impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
|
||||
|
||||
let unaligned_offset = end_offset - (PAGE_SIZE - rem_offset);
|
||||
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(unaligned_offset as u32, &pad_buf, true)) }
|
||||
unsafe { self.in_ram(|| ram_helpers::flash_range_program(unaligned_offset as u32, &pad_buf, true))? }
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@ -159,10 +161,17 @@ impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
|
||||
/// Make sure to uphold the contract points with rp2040-flash.
|
||||
/// - interrupts must be disabled
|
||||
/// - DMA must not access flash memory
|
||||
unsafe fn in_ram(&mut self, operation: impl FnOnce()) {
|
||||
unsafe fn in_ram(&mut self, operation: impl FnOnce()) -> Result<(), Error> {
|
||||
let dma_status = &mut [false; crate::dma::CHANNEL_COUNT];
|
||||
|
||||
// TODO: Make sure CORE1 is paused during the entire duration of the RAM function
|
||||
// Make sure we're running on CORE0
|
||||
let core_id: u32 = unsafe { pac::SIO.cpuid().read() };
|
||||
if core_id != 0 {
|
||||
return Err(Error::InvalidCore);
|
||||
}
|
||||
|
||||
// Make sure CORE1 is paused during the entire duration of the RAM function
|
||||
crate::multicore::pause_core1();
|
||||
|
||||
critical_section::with(|_| {
|
||||
// Pause all DMA channels for the duration of the ram operation
|
||||
@ -185,6 +194,10 @@ impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Resume CORE1 execution
|
||||
crate::multicore::resume_core1();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -11,14 +11,19 @@
|
||||
use core::mem::ManuallyDrop;
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
|
||||
use crate::pac;
|
||||
use atomic_polyfill::AtomicBool;
|
||||
|
||||
use crate::interrupt::{Interrupt, InterruptExt};
|
||||
use crate::{interrupt, pac};
|
||||
|
||||
const PAUSE_TOKEN: u32 = 0xDEADBEEF;
|
||||
const RESUME_TOKEN: u32 = !0xDEADBEEF;
|
||||
static IS_CORE1_INIT: AtomicBool = AtomicBool::new(false);
|
||||
|
||||
/// Errors for multicore operations.
|
||||
#[derive(Debug)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum Error {
|
||||
/// Operation is invalid on this core.
|
||||
InvalidCore,
|
||||
/// Core was unresponsive to commands.
|
||||
Unresponsive,
|
||||
}
|
||||
@ -64,7 +69,7 @@ fn core1_setup(stack_bottom: *mut usize) {
|
||||
|
||||
/// MultiCore execution management.
|
||||
pub struct MultiCore {
|
||||
pub cores: (Core, Core),
|
||||
pub cores: (Core0, Core1),
|
||||
}
|
||||
|
||||
/// Data type for a properly aligned stack of N 32-bit (usize) words
|
||||
@ -85,169 +90,225 @@ impl MultiCore {
|
||||
/// Create a new |MultiCore| instance.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
cores: (Core { id: CoreId::Core0 }, Core { id: CoreId::Core1 }),
|
||||
cores: (Core0 {}, Core1 {}),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the available |Core| instances.
|
||||
pub fn cores(&mut self) -> &mut (Core, Core) {
|
||||
pub fn cores(&mut self) -> &mut (Core0, Core1) {
|
||||
&mut self.cores
|
||||
}
|
||||
}
|
||||
|
||||
/// A handle for controlling a logical core.
|
||||
pub struct Core {
|
||||
pub id: CoreId,
|
||||
pub struct Core0 {}
|
||||
/// A handle for controlling a logical core.
|
||||
pub struct Core1 {}
|
||||
|
||||
#[interrupt]
|
||||
#[link_section = ".data.ram_func"]
|
||||
unsafe fn SIO_IRQ_PROC1() {
|
||||
let sio = pac::SIO;
|
||||
// Clear IRQ
|
||||
sio.fifo().st().write(|w| w.set_wof(false));
|
||||
|
||||
while sio.fifo().st().read().vld() {
|
||||
// Pause CORE1 execution and disable interrupts
|
||||
if fifo_read_wfe() == PAUSE_TOKEN {
|
||||
cortex_m::interrupt::disable();
|
||||
// Signal to CORE0 that execution is paused
|
||||
fifo_write(PAUSE_TOKEN);
|
||||
// Wait for `resume` signal from CORE0
|
||||
while fifo_read_wfe() != RESUME_TOKEN {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
cortex_m::interrupt::enable();
|
||||
// Signal to CORE0 that execution is resumed
|
||||
fifo_write(RESUME_TOKEN);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Core {
|
||||
/// Spawn a function on this core.
|
||||
impl Core1 {
|
||||
/// Spawn a function on this core
|
||||
pub fn spawn<F>(&mut self, stack: &'static mut [usize], entry: F) -> Result<(), Error>
|
||||
where
|
||||
F: FnOnce() -> bad::Never + Send + 'static,
|
||||
{
|
||||
fn fifo_write(value: u32) {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Wait for the FIFO to have some space
|
||||
while !sio.fifo().st().read().rdy() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
// Signal that it's safe for core 0 to get rid of the original value now.
|
||||
sio.fifo().wr().write_value(value);
|
||||
}
|
||||
// The first two ignored `u64` parameters are there to take up all of the registers,
|
||||
// which means that the rest of the arguments are taken from the stack,
|
||||
// where we're able to put them from core 0.
|
||||
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
|
||||
_: u64,
|
||||
_: u64,
|
||||
entry: &mut ManuallyDrop<F>,
|
||||
stack_bottom: *mut usize,
|
||||
) -> ! {
|
||||
core1_setup(stack_bottom);
|
||||
let entry = unsafe { ManuallyDrop::take(entry) };
|
||||
// Signal that it's safe for core 0 to get rid of the original value now.
|
||||
fifo_write(1);
|
||||
|
||||
// Fire off an event to the other core.
|
||||
// This is required as the other core may be `wfe` (waiting for event)
|
||||
cortex_m::asm::sev();
|
||||
IS_CORE1_INIT.store(true, Ordering::Release);
|
||||
// Enable fifo interrupt on CORE1 for `pause` functionality.
|
||||
let irq = unsafe { interrupt::SIO_IRQ_PROC1::steal() };
|
||||
irq.enable();
|
||||
|
||||
entry()
|
||||
}
|
||||
|
||||
fn fifo_read() -> u32 {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Keep trying until FIFO has data
|
||||
loop {
|
||||
if sio.fifo().st().read().vld() {
|
||||
return sio.fifo().rd().read();
|
||||
} else {
|
||||
// We expect the sending core to `sev` on write.
|
||||
cortex_m::asm::wfe();
|
||||
}
|
||||
// Reset the core
|
||||
unsafe {
|
||||
let psm = pac::PSM;
|
||||
psm.frce_off().modify(|w| w.set_proc1(true));
|
||||
while !psm.frce_off().read().proc1() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
psm.frce_off().modify(|w| w.set_proc1(false));
|
||||
}
|
||||
|
||||
// Set up the stack
|
||||
let mut stack_ptr = unsafe { stack.as_mut_ptr().add(stack.len()) };
|
||||
|
||||
// We don't want to drop this, since it's getting moved to the other core.
|
||||
let mut entry = ManuallyDrop::new(entry);
|
||||
|
||||
// Push the arguments to `core1_startup` onto the stack.
|
||||
unsafe {
|
||||
// Push `stack_bottom`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<*mut usize>().write(stack.as_mut_ptr());
|
||||
|
||||
// Push `entry`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
|
||||
}
|
||||
|
||||
// Make sure the compiler does not reorder the stack writes after to after the
|
||||
// below FIFO writes, which would result in them not being seen by the second
|
||||
// core.
|
||||
//
|
||||
// From the compiler perspective, this doesn't guarantee that the second core
|
||||
// actually sees those writes. However, we know that the RP2040 doesn't have
|
||||
// memory caches, and writes happen in-order.
|
||||
compiler_fence(Ordering::Release);
|
||||
|
||||
let p = unsafe { cortex_m::Peripherals::steal() };
|
||||
let vector_table = p.SCB.vtor.read();
|
||||
|
||||
// After reset, core 1 is waiting to receive commands over FIFO.
|
||||
// This is the sequence to have it jump to some code.
|
||||
let cmd_seq = [
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
vector_table as usize,
|
||||
stack_ptr as usize,
|
||||
core1_startup::<F> as usize,
|
||||
];
|
||||
|
||||
let mut seq = 0;
|
||||
let mut fails = 0;
|
||||
loop {
|
||||
let cmd = cmd_seq[seq] as u32;
|
||||
if cmd == 0 {
|
||||
fifo_drain();
|
||||
cortex_m::asm::sev();
|
||||
}
|
||||
fifo_write(cmd);
|
||||
|
||||
let response = fifo_read();
|
||||
if cmd == response {
|
||||
seq += 1;
|
||||
} else {
|
||||
seq = 0;
|
||||
fails += 1;
|
||||
if fails > 16 {
|
||||
// The second core isn't responding, and isn't going to take the entrypoint,
|
||||
// so we have to drop it ourselves.
|
||||
drop(ManuallyDrop::into_inner(entry));
|
||||
return Err(Error::Unresponsive);
|
||||
}
|
||||
}
|
||||
if seq >= cmd_seq.len() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
fn fifo_drain() {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
while sio.fifo().st().read().vld() {
|
||||
let _ = sio.fifo().rd().read();
|
||||
}
|
||||
}
|
||||
// Wait until the other core has copied `entry` before returning.
|
||||
fifo_read();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Pause execution on CORE1.
|
||||
pub fn pause_core1() {
|
||||
if IS_CORE1_INIT.load(Ordering::Acquire) {
|
||||
fifo_write(PAUSE_TOKEN);
|
||||
// Wait for CORE1 to signal it has paused execution.
|
||||
while fifo_read() != PAUSE_TOKEN {}
|
||||
}
|
||||
}
|
||||
|
||||
/// Resume CORE1 execution.
|
||||
pub fn resume_core1() {
|
||||
if IS_CORE1_INIT.load(Ordering::Acquire) {
|
||||
fifo_write(RESUME_TOKEN);
|
||||
// Wait for CORE1 to signal it has resumed execution.
|
||||
while fifo_read() != RESUME_TOKEN {}
|
||||
}
|
||||
}
|
||||
|
||||
// Push a value to the inter-core FIFO, block until space is available
|
||||
#[inline(always)]
|
||||
fn fifo_write(value: u32) {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Wait for the FIFO to have enough space
|
||||
while !sio.fifo().st().read().rdy() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
sio.fifo().wr().write_value(value);
|
||||
}
|
||||
// Fire off an event to the other core.
|
||||
// This is required as the other core may be `wfe` (waiting for event)
|
||||
cortex_m::asm::sev();
|
||||
}
|
||||
|
||||
match self.id {
|
||||
CoreId::Core1 => {
|
||||
// The first two ignored `u64` parameters are there to take up all of the registers,
|
||||
// which means that the rest of the arguments are taken from the stack,
|
||||
// where we're able to put them from core 0.
|
||||
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
|
||||
_: u64,
|
||||
_: u64,
|
||||
entry: &mut ManuallyDrop<F>,
|
||||
stack_bottom: *mut usize,
|
||||
) -> ! {
|
||||
core1_setup(stack_bottom);
|
||||
let entry = unsafe { ManuallyDrop::take(entry) };
|
||||
// Signal that it's safe for core 0 to get rid of the original value now.
|
||||
fifo_write(1);
|
||||
entry()
|
||||
}
|
||||
// Pop a value from inter-core FIFO, block until available
|
||||
#[inline(always)]
|
||||
fn fifo_read() -> u32 {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Wait until FIFO has data
|
||||
while !sio.fifo().st().read().vld() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
sio.fifo().rd().read()
|
||||
}
|
||||
}
|
||||
|
||||
// Reset the core
|
||||
unsafe {
|
||||
let psm = pac::PSM;
|
||||
psm.frce_off().modify(|w| w.set_proc1(true));
|
||||
while !psm.frce_off().read().proc1() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
psm.frce_off().modify(|w| w.set_proc1(false));
|
||||
}
|
||||
// Pop a value from inter-core FIFO, `wfe` until available
|
||||
#[inline(always)]
|
||||
fn fifo_read_wfe() -> u32 {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Wait until FIFO has data
|
||||
while !sio.fifo().st().read().vld() {
|
||||
cortex_m::asm::wfe();
|
||||
}
|
||||
sio.fifo().rd().read()
|
||||
}
|
||||
}
|
||||
|
||||
// Set up the stack
|
||||
let mut stack_ptr = unsafe { stack.as_mut_ptr().add(stack.len()) };
|
||||
|
||||
// We don't want to drop this, since it's getting moved to the other core.
|
||||
let mut entry = ManuallyDrop::new(entry);
|
||||
|
||||
// Push the arguments to `core1_startup` onto the stack.
|
||||
unsafe {
|
||||
// Push `stack_bottom`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<*mut usize>().write(stack.as_mut_ptr());
|
||||
|
||||
// Push `entry`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
|
||||
}
|
||||
|
||||
// Make sure the compiler does not reorder the stack writes after to after the
|
||||
// below FIFO writes, which would result in them not being seen by the second
|
||||
// core.
|
||||
//
|
||||
// From the compiler perspective, this doesn't guarantee that the second core
|
||||
// actually sees those writes. However, we know that the RP2040 doesn't have
|
||||
// memory caches, and writes happen in-order.
|
||||
compiler_fence(Ordering::Release);
|
||||
|
||||
let p = unsafe { cortex_m::Peripherals::steal() };
|
||||
let vector_table = p.SCB.vtor.read();
|
||||
|
||||
// After reset, core 1 is waiting to receive commands over FIFO.
|
||||
// This is the sequence to have it jump to some code.
|
||||
let cmd_seq = [
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
vector_table as usize,
|
||||
stack_ptr as usize,
|
||||
core1_startup::<F> as usize,
|
||||
];
|
||||
|
||||
let mut seq = 0;
|
||||
let mut fails = 0;
|
||||
loop {
|
||||
let cmd = cmd_seq[seq] as u32;
|
||||
if cmd == 0 {
|
||||
fifo_drain();
|
||||
cortex_m::asm::sev();
|
||||
}
|
||||
fifo_write(cmd);
|
||||
|
||||
let response = fifo_read();
|
||||
if cmd == response {
|
||||
seq += 1;
|
||||
} else {
|
||||
seq = 0;
|
||||
fails += 1;
|
||||
if fails > 16 {
|
||||
// The second core isn't responding, and isn't going to take the entrypoint,
|
||||
// so we have to drop it ourselves.
|
||||
drop(ManuallyDrop::into_inner(entry));
|
||||
return Err(Error::Unresponsive);
|
||||
}
|
||||
}
|
||||
if seq >= cmd_seq.len() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Wait until the other core has copied `entry` before returning.
|
||||
fifo_read();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
_ => Err(Error::InvalidCore),
|
||||
// Drain inter-core FIFO
|
||||
#[inline(always)]
|
||||
fn fifo_drain() {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
while sio.fifo().st().read().vld() {
|
||||
let _ = sio.fifo().rd().read();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user