Merge pull request #2200 from barnabywalters/asynci2cv1

Implemented async I2C for v1
This commit is contained in:
Dario Nieuwenhuis 2023-11-24 23:08:47 +00:00 committed by GitHub
commit f5c9e3baa6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 810 additions and 261 deletions

View File

@ -58,7 +58,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "a4f293d3a6f72158385f79c98634cb8a14d0d2fc", optional = true }
critical-section = "1.1"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-fbb8f77326dd066aa6c0d66b3b46e76a569dda8b" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-f6d1ffc1a25f208b5cd6b1024bff246592da1949" }
vcell = "0.1.3"
bxcan = "0.7.0"
nb = "1.0.0"
@ -76,7 +76,7 @@ critical-section = { version = "1.1", features = ["std"] }
[build-dependencies]
proc-macro2 = "1.0.36"
quote = "1.0.15"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-fbb8f77326dd066aa6c0d66b3b46e76a569dda8b", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-f6d1ffc1a25f208b5cd6b1024bff246592da1949", default-features = false, features = ["metadata"]}
[features]

View File

@ -1138,6 +1138,23 @@ fn main() {
}
}
// ========
// Write peripheral_interrupts module.
let mut mt = TokenStream::new();
for p in METADATA.peripherals {
let mut pt = TokenStream::new();
for irq in p.interrupts {
let iname = format_ident!("{}", irq.interrupt);
let sname = format_ident!("{}", irq.signal);
pt.extend(quote!(pub type #sname = crate::interrupt::typelevel::#iname;));
}
let pname = format_ident!("{}", p.name);
mt.extend(quote!(pub mod #pname { #pt }));
}
g.extend(quote!(#[allow(non_camel_case_types)] pub mod peripheral_interrupts { #mt }));
// ========
// Write foreach_foo! macrotables
@ -1296,6 +1313,9 @@ fn main() {
let mut m = String::new();
// DO NOT ADD more macros like these.
// These turned to be a bad idea!
// Instead, make build.rs generate the final code.
make_table(&mut m, "foreach_flash_region", &flash_regions_table);
make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table);

View File

@ -1,11 +1,14 @@
#![macro_use]
use core::marker::PhantomData;
use crate::interrupt;
#[cfg_attr(i2c_v1, path = "v1.rs")]
#[cfg_attr(i2c_v2, path = "v2.rs")]
mod _version;
pub use _version::*;
use embassy_sync::waitqueue::AtomicWaker;
use crate::peripherals;
@ -23,6 +26,20 @@ pub enum Error {
pub(crate) mod sealed {
use super::*;
pub struct State {
#[allow(unused)]
pub waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub trait Instance: crate::rcc::RccPeripheral {
fn regs() -> crate::pac::i2c::I2c;
fn state() -> &'static State;
@ -30,7 +47,8 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + 'static {
type Interrupt: interrupt::typelevel::Interrupt;
type EventInterrupt: interrupt::typelevel::Interrupt;
type ErrorInterrupt: interrupt::typelevel::Interrupt;
}
pin_trait!(SclPin, Instance);
@ -38,21 +56,148 @@ pin_trait!(SdaPin, Instance);
dma_trait!(RxDma, Instance);
dma_trait!(TxDma, Instance);
foreach_interrupt!(
($inst:ident, i2c, $block:ident, EV, $irq:ident) => {
/// Interrupt handler.
pub struct EventInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::EventInterrupt> for EventInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
pub struct ErrorInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::ErrorInterrupt> for ErrorInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
foreach_peripheral!(
(i2c, $inst:ident) => {
impl sealed::Instance for peripherals::$inst {
fn regs() -> crate::pac::i2c::I2c {
crate::pac::$inst
}
fn state() -> &'static State {
static STATE: State = State::new();
fn state() -> &'static sealed::State {
static STATE: sealed::State = sealed::State::new();
&STATE
}
}
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
type EventInterrupt = crate::_generated::peripheral_interrupts::$inst::EV;
type ErrorInterrupt = crate::_generated::peripheral_interrupts::$inst::ER;
}
};
);
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
use crate::dma::NoDma;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}

View File

@ -1,23 +1,33 @@
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::dma::NoDma;
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
// i2c v2 only woke the task on transfer complete interrupts. v1 uses interrupts for a bunch of
// other stuff, so we wake the task on every interrupt.
T::state().waker.wake();
critical_section::with(|_| {
// Clear event interrupt flag.
regs.cr2().modify(|w| {
w.set_itevten(false);
w.set_iterren(false);
});
});
}
#[non_exhaustive]
@ -27,14 +37,6 @@ pub struct Config {
pub scl_pullup: bool,
}
pub struct State {}
impl State {
pub(crate) const fn new() -> Self {
Self {}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
phantom: PhantomData<&'d mut T>,
#[allow(dead_code)]
@ -48,7 +50,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -98,6 +102,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
phantom: PhantomData,
tx_dma,
@ -105,40 +112,58 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> {
fn check_and_clear_error_flags() -> Result<i2c::regs::Sr1, Error> {
// Note that flags should only be cleared once they have been registered. If flags are
// cleared otherwise, there may be an inherent race condition and flags may be missed.
let sr1 = T::regs().sr1().read();
if sr1.timeout() {
T::regs().sr1().modify(|reg| reg.set_timeout(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_timeout(false);
});
return Err(Error::Timeout);
}
if sr1.pecerr() {
T::regs().sr1().modify(|reg| reg.set_pecerr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_pecerr(false);
});
return Err(Error::Crc);
}
if sr1.ovr() {
T::regs().sr1().modify(|reg| reg.set_ovr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_ovr(false);
});
return Err(Error::Overrun);
}
if sr1.af() {
T::regs().sr1().modify(|reg| reg.set_af(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_af(false);
});
return Err(Error::Nack);
}
if sr1.arlo() {
T::regs().sr1().modify(|reg| reg.set_arlo(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_arlo(false);
});
return Err(Error::Arbitration);
}
// The errata indicates that BERR may be incorrectly detected. It recommends ignoring and
// clearing the BERR bit instead.
if sr1.berr() {
T::regs().sr1().modify(|reg| reg.set_berr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_berr(false);
});
}
Ok(sr1)
@ -157,13 +182,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
// Also wait until signalled we're master and everything is waiting for us
while {
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
@ -177,7 +202,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -197,7 +222,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we're ready for sending
while {
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
!self.check_and_clear_error_flags()?.txe()
!Self::check_and_clear_error_flags()?.txe()
} {
check_timeout()?;
}
@ -208,7 +233,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until byte is transferred
while {
// Check for any potential error conditions.
!self.check_and_clear_error_flags()?.btf()
!Self::check_and_clear_error_flags()?.btf()
} {
check_timeout()?;
}
@ -219,7 +244,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
while {
// Check for any potential error conditions.
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
!T::regs().sr1().read().rxne()
} {
@ -244,7 +269,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
@ -261,7 +286,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -336,6 +361,356 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(addr, write, read, || Ok(()))
}
// Async
#[inline] // pretty sure this should always be inlined
fn enable_interrupts() -> () {
T::regs().cr2().modify(|w| {
w.set_iterren(true);
w.set_itevten(true);
});
}
async fn write_with_stop(&mut self, address: u8, write: &[u8], send_stop: bool) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
w.set_itbufen(false);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let dst = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.tx_dma;
let request = ch.request();
Transfer::new_write(ch, request, write, dst, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
let state = T::state();
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
Self::enable_interrupts();
T::regs().dr().write(|reg| reg.set_dr(address << 1));
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// Clear the ADDR condition by reading SR2.
T::regs().sr2().read();
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other
// identical poll_fn check_and_clear matches.
Err(e) => Poll::Ready(Err::<T, Error>(e)),
Ok(_) => Poll::Pending,
}
});
// Wait for either the DMA transfer to successfully finish, or an I2C error to occur.
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.btf() {
if send_stop {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, true).await?;
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
T::state().waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
Ok(())
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
let state = T::state();
let buffer_len = buffer.len();
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_itbufen(false);
w.set_dmaen(true);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
Transfer::new_read(ch, request, src, buffer, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition and set ACK bit
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// blocking read didnt have a check_and_clear call here, but blocking write did so
// Im adding it here in case that was an oversight.
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Clear ADDR condition by reading SR2
T::regs().sr2().read();
// 18.3.8: When a single byte must be received: [snip] Then the
// user can program the STOP condition either after clearing ADDR flag, or in the
// DMA Transfer Complete interrupt routine.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
} else {
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
T::regs().cr2().modify(|w| {
w.set_last(true);
})
}
// Wait for bytes to be received, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)),
_ => Poll::Pending,
}
});
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// Wait for the STOP to be sent (STOP bit cleared).
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, false).await?;
self.read(address, read).await
}
}
impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
@ -344,77 +719,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(addr, read)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, addr: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(addr, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(addr, write, read)
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for I2c<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
enum Mode {
Fast,
Standard,

View File

@ -1,19 +1,17 @@
use core::cmp;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
@ -36,25 +34,18 @@ pub fn no_timeout_fn() -> impl Fn() -> Result<(), Error> {
move || Ok(())
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
let isr = regs.isr().read();
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let regs = T::regs();
let isr = regs.isr().read();
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
}
#[non_exhaustive]
@ -77,18 +68,6 @@ impl Default for Config {
}
}
pub struct State {
waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
_peri: PeripheralRef<'d, T>,
#[allow(dead_code)]
@ -104,7 +83,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -150,8 +131,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
_peri: peri,
@ -987,35 +968,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
#[cfg(feature = "time")]
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
/// I2C Stop Configuration
///
/// Peripheral options for generating the STOP condition
@ -1140,83 +1092,6 @@ impl Timings {
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::super::{RxDma, TxDma};
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}
impl<'d, T: Instance> SetConfig for I2c<'d, T> {
type Config = Hertz;
type ConfigError = ();

View File

@ -14,7 +14,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -0,0 +1,62 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
// Example originally designed for stm32f411ceu6 reading an A1454 hall effect sensor on I2C1
// DMA peripherals changed to compile for stm32f429zi, for the CI.
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::I2c;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 96;
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
});
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello world!");
let p = embassy_stm32::init(Default::default());
let mut i2c = I2c::new(
p.I2C1,
p.PB8,
p.PB7,
Irqs,
p.DMA1_CH6,
p.DMA1_CH0,
Hertz(100_000),
Default::default(),
);
loop {
let a1454_read_sensor_command = [0x1F];
let mut sensor_data_buffer: [u8; 4] = [0, 0, 0, 0];
match i2c
.write_read(ADDRESS, &a1454_read_sensor_command, &mut sensor_data_buffer)
.await
{
Ok(()) => {
// Convert 12-bit signed integer into 16-bit signed integer.
// Is the 12 bit number negative?
if (sensor_data_buffer[2] & 0b00001000) == 0b0001000 {
sensor_data_buffer[2] = sensor_data_buffer[2] | 0b11110000;
}
let mut sensor_value_raw: u16 = sensor_data_buffer[3].into();
sensor_value_raw |= (sensor_data_buffer[2] as u16) << 8;
let sensor_value: u16 = sensor_value_raw.into();
let sensor_value = sensor_value as i16;
info!("Data: {}", sensor_value);
}
Err(e) => error!("I2C Error during read: {:?}", e),
}
}
}

View File

@ -0,0 +1,135 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
// Example originally designed for stm32f411ceu6 with three A1454 hall effect sensors, connected to I2C1, 2 and 3
// on the pins referenced in the peripheral definitions.
// Pins and DMA peripherals changed to compile for stm32f429zi, to work with the CI.
// MUST be compiled in release mode to see actual performance, otherwise the async transactions take 2x
// as long to complete as the blocking ones!
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::I2c;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use embassy_time::Instant;
use futures::future::try_join3;
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 96;
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
I2C3_EV => i2c::EventInterruptHandler<peripherals::I2C3>;
I2C3_ER => i2c::ErrorInterruptHandler<peripherals::I2C3>;
});
/// Convert 12-bit signed integer within a 4 byte long buffer into 16-bit signed integer.
fn a1454_buf_to_i16(buffer: &[u8; 4]) -> i16 {
let lower = buffer[3];
let mut upper = buffer[2];
// Fill in additional 1s if the 12 bit number is negative.
if (upper & 0b00001000) == 0b0001000 {
upper = upper | 0b11110000;
}
let mut sensor_value_raw: u16 = lower.into();
sensor_value_raw |= (upper as u16) << 8;
let sensor_value: u16 = sensor_value_raw.into();
let sensor_value = sensor_value as i16;
sensor_value
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Setting up peripherals.");
let p = embassy_stm32::init(Default::default());
let mut i2c1 = I2c::new(
p.I2C1,
p.PB8,
p.PB7,
Irqs,
p.DMA1_CH6,
p.DMA1_CH0,
Hertz(100_000),
Default::default(),
);
let mut i2c2 = I2c::new(
p.I2C2,
p.PB10,
p.PB11,
Irqs,
p.DMA1_CH7,
p.DMA1_CH3,
Hertz(100_000),
Default::default(),
);
let mut i2c3 = I2c::new(
p.I2C3,
p.PA8,
p.PC9,
Irqs,
p.DMA1_CH4,
p.DMA1_CH2,
Hertz(100_000),
Default::default(),
);
let a1454_read_sensor_command = [0x1F];
let mut i2c1_buffer: [u8; 4] = [0, 0, 0, 0];
let mut i2c2_buffer: [u8; 4] = [0, 0, 0, 0];
let mut i2c3_buffer: [u8; 4] = [0, 0, 0, 0];
loop {
// Blocking reads one after the other. Completes in about 2000us.
let blocking_read_start_us = Instant::now().as_micros();
match i2c1.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c1_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
match i2c2.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c2_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
match i2c3.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c3_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
let blocking_read_total_us = Instant::now().as_micros() - blocking_read_start_us;
info!(
"Blocking reads completed in {}us: i2c1: {} i2c2: {} i2c3: {}",
blocking_read_total_us,
a1454_buf_to_i16(&i2c1_buffer),
a1454_buf_to_i16(&i2c2_buffer),
a1454_buf_to_i16(&i2c3_buffer)
);
// Async reads overlapping. Completes in about 1000us.
let async_read_start_us = Instant::now().as_micros();
let i2c1_result = i2c1.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c1_buffer);
let i2c2_result = i2c2.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c2_buffer);
let i2c3_result = i2c3.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c3_buffer);
// Wait for all three transactions to finish, or any one of them to fail.
match try_join3(i2c1_result, i2c2_result, i2c3_result).await {
Ok(_) => {
let async_read_total_us = Instant::now().as_micros() - async_read_start_us;
info!(
"Async reads completed in {}us: i2c1: {} i2c2: {} i2c3: {}",
async_read_total_us,
a1454_buf_to_i16(&i2c1_buffer),
a1454_buf_to_i16(&i2c2_buffer),
a1454_buf_to_i16(&i2c3_buffer)
);
}
Err(e) => error!("I2C Error during async write-read: {}", e),
};
}
}

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -19,7 +19,8 @@ const HEIGHT: usize = 100;
static mut FRAME: [u32; WIDTH * HEIGHT / 2] = [0u32; WIDTH * HEIGHT / 2];
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::InterruptHandler<peripherals::I2C1>;
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
DCMI => dcmi::InterruptHandler<peripherals::DCMI>;
});

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -14,7 +14,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -16,7 +16,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -40,7 +40,8 @@ use static_cell::make_static;
use {embassy_stm32 as hal, panic_probe as _};
bind_interrupts!(struct Irqs {
I2C3_EV => i2c::InterruptHandler<peripherals::I2C3>;
I2C3_EV => i2c::EventInterruptHandler<peripherals::I2C3>;
I2C3_ER => i2c::ErrorInterruptHandler<peripherals::I2C3>;
RNG => rng::InterruptHandler<peripherals::RNG>;
});