833: nrf/uart: add support for tx-only and rx-only uart. r=Dirbaio a=Dirbaio

Allow creating UarteRx/UarteTx directly. This allows using uart unidirectionally
(rx-only or tx-only), without having to 'waste' a pin for the unused direction.

Co-authored-by: Dario Nieuwenhuis <dirbaio@dirbaio.net>
This commit is contained in:
bors[bot] 2022-06-25 23:45:01 +00:00 committed by GitHub
commit ffc32d3ddb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -19,9 +19,10 @@ use core::task::Poll;
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::unborrow;
use futures::future::poll_fn; // Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::baudrate::BAUDRATE_A as Baudrate;
pub use pac::uarte0::config::PARITY_A as Parity;
use futures::future::poll_fn;
use pac::uarte0::RegisterBlock;
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::sealed::Pin as _;
@ -32,6 +33,7 @@ use crate::timer::{Frequency, Instance as TimerInstance, Timer};
use crate::util::slice_in_ram_or;
use crate::{pac, Unborrow};
#[derive(Clone)]
#[non_exhaustive]
pub struct Config {
pub parity: Parity,
@ -144,37 +146,18 @@ impl<'d, T: Instance> Uarte<'d, T> {
}
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
// Configure
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
let hardware_flow_control = match (rts.is_some(), cts.is_some()) {
(false, false) => false,
(true, true) => true,
_ => panic!("RTS and CTS pins must be either both set or none set."),
};
r.config.write(|w| {
w.hwfc().bit(hardware_flow_control);
w.parity().variant(config.parity);
w
});
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
// Disable all interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
// Reset rxstarted, txstarted. These are used by drop to know whether a transfer was
// stopped midway or not.
r.events_rxstarted.reset();
r.events_txstarted.reset();
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
// Enable
apply_workaround_for_enable_anomaly(&r);
r.enable.write(|w| w.enable().enabled());
configure(r, config, hardware_flow_control);
let s = T::state();
s.tx_rx_refcount.store(2, Ordering::Relaxed);
Self {
@ -238,7 +221,87 @@ impl<'d, T: Instance> Uarte<'d, T> {
}
}
fn configure(r: &RegisterBlock, config: Config, hardware_flow_control: bool) {
r.config.write(|w| {
w.hwfc().bit(hardware_flow_control);
w.parity().variant(config.parity);
w
});
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
// Disable all interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
// Reset rxstarted, txstarted. These are used by drop to know whether a transfer was
// stopped midway or not.
r.events_rxstarted.reset();
r.events_txstarted.reset();
// Enable
apply_workaround_for_enable_anomaly(&r);
r.enable.write(|w| w.enable().enabled());
}
impl<'d, T: Instance> UarteTx<'d, T> {
/// Create a new tx-only UARTE without hardware flow control
pub fn new(
uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(txd);
Self::new_inner(uarte, irq, txd.degrade(), None, config)
}
/// Create a new tx-only UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
cts: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(txd, cts);
Self::new_inner(uarte, irq, txd.degrade(), Some(cts.degrade()), config)
}
fn new_inner(
_uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
txd: AnyPin,
cts: Option<AnyPin>,
config: Config,
) -> Self {
unborrow!(irq);
let r = T::regs();
txd.set_high();
txd.conf().write(|w| w.dir().output().drive().s0s1());
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
if let Some(pin) = &cts {
pin.conf().write(|w| w.input().connect().drive().h0h1());
}
r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
r.psel.rxd.write(|w| w.connect().disconnected());
r.psel.rts.write(|w| w.connect().disconnected());
let hardware_flow_control = cts.is_some();
configure(r, config, hardware_flow_control);
irq.set_handler(Uarte::<T>::on_interrupt);
irq.unpend();
irq.enable();
let s = T::state();
s.tx_rx_refcount.store(1, Ordering::Relaxed);
Self { phantom: PhantomData }
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
match self.write_from_ram(buffer).await {
Ok(_) => Ok(()),
@ -372,6 +435,65 @@ impl<'a, T: Instance> Drop for UarteTx<'a, T> {
}
impl<'d, T: Instance> UarteRx<'d, T> {
/// Create a new rx-only UARTE without hardware flow control
pub fn new(
uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(rxd);
Self::new_inner(uarte, irq, rxd.degrade(), None, config)
}
/// Create a new rx-only UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
rts: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(rxd, rts);
Self::new_inner(uarte, irq, rxd.degrade(), Some(rts.degrade()), config)
}
fn new_inner(
_uarte: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
rxd: AnyPin,
rts: Option<AnyPin>,
config: Config,
) -> Self {
unborrow!(irq);
let r = T::regs();
rxd.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
if let Some(pin) = &rts {
pin.set_high();
pin.conf().write(|w| w.dir().output().drive().h0h1());
}
r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
r.psel.txd.write(|w| w.connect().disconnected());
r.psel.cts.write(|w| w.connect().disconnected());
irq.set_handler(Uarte::<T>::on_interrupt);
irq.unpend();
irq.enable();
let hardware_flow_control = rts.is_some();
configure(r, config, hardware_flow_control);
let s = T::state();
s.tx_rx_refcount.store(1, Ordering::Relaxed);
Self { phantom: PhantomData }
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if buffer.len() == 0 {
return Err(Error::BufferZeroLength);