- Move Interrupt and InterruptExecutor from `embassy` to `embassy-cortex-m`.
- Move Unborrow from `embassy` to `embassy-hal-common` (nothing in `embassy` requires it anymore)
- Move PeripheralMutex from `embassy-hal-common` to `embassy-cortex-m`.
I've renamed the channel module for the MPMC as mpmc. There was a previous debate about this, but I feel that the strategy here avoids importing `channel::channel`. The change leaves `signal::Signal`, but I think that's ok. It is all a bit subjective of course. The bottom line for me is that I really like the term mpmc - it means something to me and aligns with broader naming e.g. in Tokio.
781: embassy-net v2 r=Dirbaio a=Dirbaio
- No more `dyn`
- It's no longer a global singleton, you can create muliple net stacks at once.
- You can't tear them down though, the Device it still has to be `'static` due to restrictions with smoltcp's "fake GAT" in the Device trait. :(
- Removed `_embassy_rand` hack, random seed is passed on creation.
785: stm32: g0: add PLL clock source r=Dirbaio a=willglynn
STM32G0 SYSCLK can be sourced from PLLRCLK. Given that the HSI runs at 16 MHz and the HSE range is 4-48 MHz, the PLL is the only way to reach 64 MHz. This commit adds `ClockSrc::PLL`.
The PLL sources from either HSI16 or HSE, divides it by `m`, and locks its VCO to multiple `n`. It then divides the VCO by `r`, `p`, and `q` to produce up to three associated clock signals:
* PLLRCLK is one of the inputs on the SYSCLK mux. This is the main reason the user will configure the PLL, so `r` is mandatory and the output is enabled unconditionally.
* PLLPCLK is available as a clock source for the ADC and I2S peripherals, so `p` is optional and the output is conditional.
* PLLQCLK exists only on STM32G0B0xx, and exists only to feed the MCO and MCO2 peripherals, so `q` is optional and the output is conditional.
When the user specifies `ClockSrc::PLL(PllConfig)`, `rcc::init()` calls `PllConfig::init()` which initializes the PLL per [RM0454]. It disables the PLL, waits for it to stop, enables the source oscillator, configures the PLL, waits for it to lock, and then enables the appropriate outputs. `rcc::init()` then switches the clock source to PLLRCLK.
`rcc::init()` is now also resonsible for calculating and setting flash wait states. SYSCLCK < 24 MHz is fine in the reset state, but 24-48 MHz requires waiting 1 cycle and 48-64 MHz requires waiting 2 cycles. (This was likely a blocker for anyone using HSE >= 24 MHz, with or without the PLL.) Flash accesses are now automatically slowed down as needed before changing the clock source, and sped up as permitted after changing the clock source. The number of flash wait states also determines if flash prefetching will be profitable, so that is now handled automatically too.
[RM0454]: https://www.st.com/resource/en/reference_manual/rm0454-stm32g0x0-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
Co-authored-by: Dario Nieuwenhuis <dirbaio@dirbaio.net>
Co-authored-by: Will Glynn <will@willglynn.com>
SMI Ethernet PHYs all share a common base set of registers that can do
90% of all tasks. The LAN8742 driver used some vendor-specific
registers to check link negotiation status, but the need for that was
debatable, so I migrated it to a generic driver instead, anybody who
wants extra functionality can copy it and impl their own on top of it.
- Allow initializing in a static, without Forever.
- Remove ability to close, since in embedded enviromnents channels usually live forever and don't get closed.
- Remove MPSC restriction, it's MPMC now. Rename "mpsc" to "channel".
- `Sender` and `Receiver` are still available if you want to enforce a piece of code only has send/receive access, but are optional: you can send/receive directly into the Channel if you want.
* Keeps existing API for usart, but wraps it in Tx and Rx sub-types
* Adds split() method similar to nRF for getting indepdendent TX and RX
parts
* Implements e-h traits for TX and RX types
* Add stm32h7 example
Rustflags apply to ALL the crates in the graph, while we only need
them for the toplevel crate which is the only one getting linked.
Rustflags are not equal for all crates, this caused cargo to re-build the
same dependency crate multiple times uselessly. After this change, deps
are reused more, making builds faster.
Note that this only applies when sharing the target/ dir for multiple crates
in the repo which is not the default.