Starting the sampling task prior to starting the SAADC peripheral can lead to unexpected buffer behaviour with multiple channels. We now provide an init callback at the point where the SAADC has started for the first time. This callback can be used to kick off sampling via PPI.
We also need to trigger the SAADC to start sampling the next buffer when the previous one is ended so that we do not drop samples - the major benefit of double buffering.
As a bonus we provide a calibrate method as it is recommended to use before starting up the sampling.
The example has been updated to illustrate these new features.
The buffer will always have been filled and we never explicitly stop the task outside of this code. Thus, we can assume the number of bytes in the slice.
Implements continuous sampling for the nRF SAADC and also renames `OneShot` to `Saadc`. The one-shot behaviour is retained with the `sample` method and a new `run_sampler` method is provided for efficiently (i.e. zero copying) sampler processing. A double buffer is used for continuously sampling, which wlll be swapped once sampling has taken place.
A sample frequency is provided and will set the internal timer of the SAADC when there is just the one channel being sampled. Otherwise, PPI will be used to hook up the TIMER peripheral to drive the sampling task.
One-shot mode now permits the sampling of differential pins, and the sampling of multiple pins simultaneously.
A new ChannelConfig structure has been introduced so that multiple channels can be configured individually. Further, the `sample` method now accepts a buffer into which samples are written.
Along the way, I've reset some default configuration to align with Nordic's settings in their nrfx saadc driver. Specifically, the channel gain defaults to 6 (from 4) and the time defaults to 10us (from 20us).