Compare commits

..

2 Commits

Author SHA1 Message Date
54123de7bd stm32/i2c: WIP async i2cv1 2023-11-18 01:57:53 +01:00
838a97c186 stm32/i2c: add async, dual interrupt scaffolding. 2023-11-18 01:57:53 +01:00
47 changed files with 744 additions and 1625 deletions

View File

@ -12,19 +12,9 @@ export CARGO_TARGET_DIR=/ci/cache/target
# used when pointing stm32-metapac to a CI-built one.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# Restore lockfiles
if [ -f /ci/cache/lockfiles.tar ]; then
echo Restoring lockfiles...
tar xf /ci/cache/lockfiles.tar
fi
hashtime restore /ci/cache/filetime.json || true
hashtime save /ci/cache/filetime.json
sed -i 's/channel.*/channel = "stable"/g' rust-toolchain.toml
./ci_stable.sh
# Save lockfiles
echo Saving lockfiles...
find . -type f -name Cargo.lock -exec tar -cf /ci/cache/lockfiles.tar '{}' \+

10
.github/ci/build.sh vendored
View File

@ -18,17 +18,7 @@ fi
# used when pointing stm32-metapac to a CI-built one.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# Restore lockfiles
if [ -f /ci/cache/lockfiles.tar ]; then
echo Restoring lockfiles...
tar xf /ci/cache/lockfiles.tar
fi
hashtime restore /ci/cache/filetime.json || true
hashtime save /ci/cache/filetime.json
./ci.sh
# Save lockfiles
echo Saving lockfiles...
find . -type f -name Cargo.lock -exec tar -cf /ci/cache/lockfiles.tar '{}' \+

3
.github/ci/test.sh vendored
View File

@ -15,9 +15,6 @@ export CARGO_NET_GIT_FETCH_WITH_CLI=true
hashtime restore /ci/cache/filetime.json || true
hashtime save /ci/cache/filetime.json
MIRIFLAGS=-Zmiri-ignore-leaks cargo miri test --manifest-path ./embassy-executor/Cargo.toml
MIRIFLAGS=-Zmiri-ignore-leaks cargo miri test --manifest-path ./embassy-executor/Cargo.toml --features nightly
cargo test --manifest-path ./embassy-sync/Cargo.toml
cargo test --manifest-path ./embassy-embedded-hal/Cargo.toml
cargo test --manifest-path ./embassy-hal-internal/Cargo.toml

2
ci.sh
View File

@ -38,7 +38,6 @@ cargo batch \
--- build --release --manifest-path embassy-sync/Cargo.toml --target thumbv6m-none-eabi --features nightly,defmt \
--- build --release --manifest-path embassy-time/Cargo.toml --target thumbv6m-none-eabi --features nightly,defmt,defmt-timestamp-uptime,tick-hz-32_768,generic-queue-8 \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,proto-ipv4,medium-ethernet \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,proto-ipv4,igmp,medium-ethernet \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,dhcpv4,medium-ethernet \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,dhcpv4,medium-ethernet,nightly,dhcpv4-hostname \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,proto-ipv6,medium-ethernet \
@ -111,7 +110,6 @@ cargo batch \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h753zi,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h735zg,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h755zi-cm7,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h725re,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h7b3ai,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32l476vg,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32l422cb,defmt,exti,time-driver-any,unstable-traits,time \

View File

@ -10,4 +10,3 @@
* xref:examples.adoc[Examples]
* xref:developer.adoc[Developer]
** xref:developer_stm32.adoc[Developer: STM32]
* xref:faq.adoc[Frequently Asked Questions]

View File

@ -1,38 +0,0 @@
= Frequently Asked Questions
These are a list of unsorted, commonly asked questions and answers.
Please feel free to add items to link:https://github.com/embassy-rs/embassy/edit/main/docs/modules/ROOT/pages/faq.adoc[this page], especially if someone in the chat answered a question for you!
== How to deploy to RP2040 without a debugging probe.
Install link:https://github.com/JoNil/elf2uf2-rs[elf2uf2-rs] for converting the generated elf binary into a uf2 file.
Configure the runner to use this tool, add this to `.cargo/config.toml`:
[source,toml]
----
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "elf2uf2-rs --deploy --serial --verbose"
----
The command-line parameters `--deploy` will detect your device and upload the binary, `--serial` starts a serial connection. See the documentation for more info.
== Missing main macro
If you see an error like this:
[source,rust]
----
#[embassy_executor::main]
| ^^^^ could not find `main` in `embassy_executor`
----
You are likely missing some features of the `embassy-executor` crate.
For Cortex-M targets, consider making sure that ALL of the following features are active in your `Cargo.toml` for the `embassy-executor` crate:
* `arch-cortex-m`
* `executor-thread`
* `nightly`
For Xtensa ESP32, consider using the executors and `#[main]` macro provided by your appropriate link:https://crates.io/crates/esp-hal-common[HAL crate].

View File

@ -27,6 +27,31 @@ default-target = "thumbv7em-none-eabi"
targets = ["thumbv7em-none-eabi"]
features = ["nightly", "defmt", "arch-cortex-m", "executor-thread", "executor-interrupt"]
[features]
# Architecture
_arch = [] # some arch was picked
arch-std = ["_arch", "critical-section/std"]
arch-cortex-m = ["_arch", "dep:cortex-m"]
arch-xtensa = ["_arch"]
arch-riscv32 = ["_arch", "dep:portable-atomic"]
arch-wasm = ["_arch", "dep:wasm-bindgen", "dep:js-sys"]
# Enable the thread-mode executor (using WFE/SEV in Cortex-M, WFI in other embedded archs)
executor-thread = []
# Enable the interrupt-mode executor (available in Cortex-M only)
executor-interrupt = []
# Enable nightly-only features
nightly = []
turbowakers = []
integrated-timers = ["dep:embassy-time"]
# Trace interrupt invocations with rtos-trace.
rtos-trace-interrupt = ["rtos-trace", "embassy-macros/rtos-trace-interrupt"]
[dependencies]
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
@ -46,74 +71,3 @@ cortex-m = { version = "0.7.6", optional = true }
# arch-wasm dependencies
wasm-bindgen = { version = "0.2.82", optional = true }
js-sys = { version = "0.3", optional = true }
[dev-dependencies]
critical-section = { version = "1.1", features = ["std"] }
[features]
# Architecture
_arch = [] # some arch was picked
arch-std = ["_arch", "critical-section/std"]
arch-cortex-m = ["_arch", "dep:cortex-m"]
arch-xtensa = ["_arch"]
arch-riscv32 = ["_arch", "dep:portable-atomic"]
arch-wasm = ["_arch", "dep:wasm-bindgen", "dep:js-sys"]
# Enable the thread-mode executor (using WFE/SEV in Cortex-M, WFI in other embedded archs)
executor-thread = []
# Enable the interrupt-mode executor (available in Cortex-M only)
executor-interrupt = []
# Enable nightly-only features
nightly = ["embassy-macros/nightly"]
turbowakers = []
integrated-timers = ["dep:embassy-time"]
# BEGIN AUTOGENERATED CONFIG FEATURES
# Generated by gen_config.py. DO NOT EDIT.
task-arena-size-64 = []
task-arena-size-128 = []
task-arena-size-192 = []
task-arena-size-256 = []
task-arena-size-320 = []
task-arena-size-384 = []
task-arena-size-512 = []
task-arena-size-640 = []
task-arena-size-768 = []
task-arena-size-1024 = []
task-arena-size-1280 = []
task-arena-size-1536 = []
task-arena-size-2048 = []
task-arena-size-2560 = []
task-arena-size-3072 = []
task-arena-size-4096 = [] # Default
task-arena-size-5120 = []
task-arena-size-6144 = []
task-arena-size-8192 = []
task-arena-size-10240 = []
task-arena-size-12288 = []
task-arena-size-16384 = []
task-arena-size-20480 = []
task-arena-size-24576 = []
task-arena-size-32768 = []
task-arena-size-40960 = []
task-arena-size-49152 = []
task-arena-size-65536 = []
task-arena-size-81920 = []
task-arena-size-98304 = []
task-arena-size-131072 = []
task-arena-size-163840 = []
task-arena-size-196608 = []
task-arena-size-262144 = []
task-arena-size-327680 = []
task-arena-size-393216 = []
task-arena-size-524288 = []
task-arena-size-655360 = []
task-arena-size-786432 = []
task-arena-size-1048576 = []
# END AUTOGENERATED CONFIG FEATURES

View File

@ -2,36 +2,10 @@
An async/await executor designed for embedded usage.
- No `alloc`, no heap needed.
- With nightly Rust, task futures can be fully statically allocated.
- No `alloc`, no heap needed. Task futures are statically allocated.
- No "fixed capacity" data structures, executor works with 1 or 1000 tasks without needing config/tuning.
- Integrated timer queue: sleeping is easy, just do `Timer::after_secs(1).await;`.
- No busy-loop polling: CPU sleeps when there's no work to do, using interrupts or `WFE/SEV`.
- Efficient polling: a wake will only poll the woken task, not all of them.
- Fair: a task can't monopolize CPU time even if it's constantly being woken. All other tasks get a chance to run before a given task gets polled for the second time.
- Creating multiple executor instances is supported, to run tasks with multiple priority levels. This allows higher-priority tasks to preempt lower-priority tasks.
## Task arena
When the `nightly` Cargo feature is not enabled, `embassy-executor` allocates tasks out of an arena (a very simple bump allocator).
If the task arena gets full, the program will panic at runtime. To guarantee this doesn't happen, you must set the size to the sum of sizes of all tasks.
Tasks are allocated from the arena when spawned for the first time. If the task exists, the allocation is not released to the arena, but can be reused to spawn the task again. For multiple-instance tasks (like `#[embassy_executor::task(pool_size = 4)]`), the first spawn will allocate memory for all instances. This is done for performance and to increase predictability (for example, spawning at least 1 instance of every task at boot guarantees an immediate panic if the arena is too small, while allocating instances on-demand could delay the panic to only when the program is under load).
The arena size can be configured in two ways:
- Via Cargo features: enable a Cargo feature like `task-arena-size-8192`. Only a selection of values
is available, check `Cargo.toml` for the list.
- Via environment variables at build time: set the variable named `EMBASSY_EXECUTOR_TASK_ARENA_SIZE`. For example
`EMBASSY_EXECUTOR_TASK_ARENA_SIZE=4321 cargo build`. You can also set them in the `[env]` section of `.cargo/config.toml`.
Any value can be set, unlike with Cargo features.
Environment variables take precedence over Cargo features. If two Cargo features are enabled for the same setting
with different values, compilation fails.
## Statically allocating tasks
When using nightly Rust, enable the `nightly` Cargo feature. This will make `embassy-executor` use the `type_alias_impl_trait` feature to allocate all tasks in `static`s. Each task gets its own `static`, with the exact size to hold the task (or multiple instances of it, if using `pool_size`) calculated automatically at compile time. If tasks don't fit in RAM, this is detected at compile time by the linker. Runtime panics due to running out of memory are not possible.
The configured arena size is ignored, no arena is used at all.

View File

@ -1,97 +1,6 @@
use std::collections::HashMap;
use std::fmt::Write;
use std::path::PathBuf;
use std::{env, fs};
static CONFIGS: &[(&str, usize)] = &[
// BEGIN AUTOGENERATED CONFIG FEATURES
// Generated by gen_config.py. DO NOT EDIT.
("TASK_ARENA_SIZE", 4096),
// END AUTOGENERATED CONFIG FEATURES
];
struct ConfigState {
value: usize,
seen_feature: bool,
seen_env: bool,
}
use std::env;
fn main() {
let crate_name = env::var("CARGO_PKG_NAME")
.unwrap()
.to_ascii_uppercase()
.replace('-', "_");
// only rebuild if build.rs changed. Otherwise Cargo will rebuild if any
// other file changed.
println!("cargo:rerun-if-changed=build.rs");
// Rebuild if config envvar changed.
for (name, _) in CONFIGS {
println!("cargo:rerun-if-env-changed={crate_name}_{name}");
}
let mut configs = HashMap::new();
for (name, default) in CONFIGS {
configs.insert(
*name,
ConfigState {
value: *default,
seen_env: false,
seen_feature: false,
},
);
}
let prefix = format!("{crate_name}_");
for (var, value) in env::vars() {
if let Some(name) = var.strip_prefix(&prefix) {
let Some(cfg) = configs.get_mut(name) else {
panic!("Unknown env var {name}")
};
let Ok(value) = value.parse::<usize>() else {
panic!("Invalid value for env var {name}: {value}")
};
cfg.value = value;
cfg.seen_env = true;
}
if let Some(feature) = var.strip_prefix("CARGO_FEATURE_") {
if let Some(i) = feature.rfind('_') {
let name = &feature[..i];
let value = &feature[i + 1..];
if let Some(cfg) = configs.get_mut(name) {
let Ok(value) = value.parse::<usize>() else {
panic!("Invalid value for feature {name}: {value}")
};
// envvars take priority.
if !cfg.seen_env {
if cfg.seen_feature {
panic!("multiple values set for feature {}: {} and {}", name, cfg.value, value);
}
cfg.value = value;
cfg.seen_feature = true;
}
}
}
}
}
let mut data = String::new();
for (name, cfg) in &configs {
writeln!(&mut data, "pub const {}: usize = {};", name, cfg.value).unwrap();
}
let out_dir = PathBuf::from(env::var_os("OUT_DIR").unwrap());
let out_file = out_dir.join("config.rs").to_string_lossy().to_string();
fs::write(out_file, data).unwrap();
// cortex-m targets
let target = env::var("TARGET").unwrap();
if target.starts_with("thumbv6m-") {

View File

@ -1,82 +0,0 @@
import os
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
features = []
def feature(name, default, min=None, max=None, pow2=None, vals=None, factors=[]):
if vals is None:
assert min is not None
assert max is not None
vals = set()
val = min
while val <= max:
vals.add(val)
for f in factors:
if val * f <= max:
vals.add(val * f)
if (pow2 == True or (isinstance(pow2, int) and val >= pow2)) and val > 0:
val *= 2
else:
val += 1
vals.add(default)
vals = sorted(list(vals))
features.append(
{
"name": name,
"default": default,
"vals": vals,
}
)
feature(
"task_arena_size", default=4096, min=64, max=1024 * 1024, pow2=True, factors=[3, 5]
)
# ========= Update Cargo.toml
things = ""
for f in features:
name = f["name"].replace("_", "-")
for val in f["vals"]:
things += f"{name}-{val} = []"
if val == f["default"]:
things += " # Default"
things += "\n"
things += "\n"
SEPARATOR_START = "# BEGIN AUTOGENERATED CONFIG FEATURES\n"
SEPARATOR_END = "# END AUTOGENERATED CONFIG FEATURES\n"
HELP = "# Generated by gen_config.py. DO NOT EDIT.\n"
with open("Cargo.toml", "r") as f:
data = f.read()
before, data = data.split(SEPARATOR_START, maxsplit=1)
_, after = data.split(SEPARATOR_END, maxsplit=1)
data = before + SEPARATOR_START + HELP + things + SEPARATOR_END + after
with open("Cargo.toml", "w") as f:
f.write(data)
# ========= Update build.rs
things = ""
for f in features:
name = f["name"].upper()
things += f' ("{name}", {f["default"]}),\n'
SEPARATOR_START = "// BEGIN AUTOGENERATED CONFIG FEATURES\n"
SEPARATOR_END = "// END AUTOGENERATED CONFIG FEATURES\n"
HELP = " // Generated by gen_config.py. DO NOT EDIT.\n"
with open("build.rs", "r") as f:
data = f.read()
before, data = data.split(SEPARATOR_START, maxsplit=1)
_, after = data.split(SEPARATOR_END, maxsplit=1)
data = before + SEPARATOR_START + HELP + things + " " + SEPARATOR_END + after
with open("build.rs", "w") as f:
f.write(data)

View File

@ -51,6 +51,7 @@ mod thread {
use core::arch::asm;
use core::marker::PhantomData;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_cortex_m as main;
use crate::{raw, Spawner};

View File

@ -7,6 +7,7 @@ pub use thread::*;
mod thread {
use core::marker::PhantomData;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_riscv as main;
use portable_atomic::{AtomicBool, Ordering};

View File

@ -8,6 +8,7 @@ mod thread {
use std::marker::PhantomData;
use std::sync::{Condvar, Mutex};
#[cfg(feature = "nightly")]
pub use embassy_macros::main_std as main;
use crate::{raw, Spawner};

View File

@ -8,6 +8,7 @@ mod thread {
use core::marker::PhantomData;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_wasm as main;
use js_sys::Promise;
use wasm_bindgen::prelude::*;

View File

@ -8,6 +8,7 @@ mod thread {
use core::marker::PhantomData;
use core::sync::atomic::{AtomicBool, Ordering};
#[cfg(feature = "nightly")]
pub use embassy_macros::main_riscv as main;
use crate::{raw, Spawner};

View File

@ -1,5 +1,5 @@
#![cfg_attr(not(any(feature = "arch-std", feature = "arch-wasm")), no_std)]
#![cfg_attr(feature = "arch-xtensa", feature(asm_experimental_arch))]
#![cfg_attr(all(feature = "nightly", feature = "arch-xtensa"), feature(asm_experimental_arch))]
#![allow(clippy::new_without_default)]
#![doc = include_str!("../README.md")]
#![warn(missing_docs)]
@ -7,6 +7,7 @@
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
#[cfg(feature = "nightly")]
pub use embassy_macros::task;
macro_rules! check_at_most_one {
@ -40,101 +41,28 @@ pub mod raw;
mod spawner;
pub use spawner::*;
mod config {
#![allow(unused)]
include!(concat!(env!("OUT_DIR"), "/config.rs"));
}
/// Implementation details for embassy macros.
/// Do not use. Used for macros and HALs only. Not covered by semver guarantees.
#[doc(hidden)]
#[cfg(not(feature = "nightly"))]
pub mod _export {
use core::alloc::Layout;
use core::cell::{Cell, UnsafeCell};
use core::future::Future;
use core::mem::MaybeUninit;
use core::ptr::null_mut;
#[cfg(feature = "rtos-trace")]
pub use rtos_trace::trace;
use critical_section::{CriticalSection, Mutex};
use crate::raw::TaskPool;
struct Arena<const N: usize> {
buf: UnsafeCell<MaybeUninit<[u8; N]>>,
ptr: Mutex<Cell<*mut u8>>,
/// Expands the given block of code when `embassy-executor` is compiled with
/// the `rtos-trace-interrupt` feature.
#[doc(hidden)]
#[macro_export]
#[cfg(feature = "rtos-trace-interrupt")]
macro_rules! rtos_trace_interrupt {
($($tt:tt)*) => { $($tt)* };
}
unsafe impl<const N: usize> Sync for Arena<N> {}
unsafe impl<const N: usize> Send for Arena<N> {}
impl<const N: usize> Arena<N> {
const fn new() -> Self {
Self {
buf: UnsafeCell::new(MaybeUninit::uninit()),
ptr: Mutex::new(Cell::new(null_mut())),
}
}
fn alloc<T>(&'static self, cs: CriticalSection) -> &'static mut MaybeUninit<T> {
let layout = Layout::new::<T>();
let start = self.buf.get().cast::<u8>();
let end = unsafe { start.add(N) };
let mut ptr = self.ptr.borrow(cs).get();
if ptr.is_null() {
ptr = self.buf.get().cast::<u8>();
}
let bytes_left = (end as usize) - (ptr as usize);
let align_offset = (ptr as usize).next_multiple_of(layout.align()) - (ptr as usize);
if align_offset + layout.size() > bytes_left {
panic!("embassy-executor: task arena is full. You must increase the arena size, see the documentation for details: https://docs.embassy.dev/embassy-executor/");
}
let res = unsafe { ptr.add(align_offset) };
let ptr = unsafe { ptr.add(align_offset + layout.size()) };
self.ptr.borrow(cs).set(ptr);
unsafe { &mut *(res as *mut MaybeUninit<T>) }
}
}
static ARENA: Arena<{ crate::config::TASK_ARENA_SIZE }> = Arena::new();
pub struct TaskPoolRef {
// type-erased `&'static mut TaskPool<F, N>`
// Needed because statics can't have generics.
ptr: Mutex<Cell<*mut ()>>,
}
unsafe impl Sync for TaskPoolRef {}
unsafe impl Send for TaskPoolRef {}
impl TaskPoolRef {
pub const fn new() -> Self {
Self {
ptr: Mutex::new(Cell::new(null_mut())),
}
}
/// Get the pool for this ref, allocating it from the arena the first time.
///
/// safety: for a given TaskPoolRef instance, must always call with the exact
/// same generic params.
pub unsafe fn get<F: Future, const N: usize>(&'static self) -> &'static TaskPool<F, N> {
critical_section::with(|cs| {
let ptr = self.ptr.borrow(cs);
if ptr.get().is_null() {
let pool = ARENA.alloc::<TaskPool<F, N>>(cs);
pool.write(TaskPool::new());
ptr.set(pool as *mut _ as _);
}
unsafe { &*(ptr.get() as *const _) }
})
}
/// Does not expand the given block of code when `embassy-executor` is
/// compiled without the `rtos-trace-interrupt` feature.
#[doc(hidden)]
#[macro_export]
#[cfg(not(feature = "rtos-trace-interrupt"))]
macro_rules! rtos_trace_interrupt {
($($tt:tt)*) => {};
}
}

View File

@ -1,137 +0,0 @@
#![cfg_attr(feature = "nightly", feature(type_alias_impl_trait))]
use std::boxed::Box;
use std::future::poll_fn;
use std::sync::{Arc, Mutex};
use std::task::Poll;
use embassy_executor::raw::Executor;
use embassy_executor::task;
#[export_name = "__pender"]
fn __pender(context: *mut ()) {
unsafe {
let trace = &*(context as *const Trace);
trace.push("pend");
}
}
#[derive(Clone)]
struct Trace {
trace: Arc<Mutex<Vec<&'static str>>>,
}
impl Trace {
fn new() -> Self {
Self {
trace: Arc::new(Mutex::new(Vec::new())),
}
}
fn push(&self, value: &'static str) {
self.trace.lock().unwrap().push(value)
}
fn get(&self) -> Vec<&'static str> {
self.trace.lock().unwrap().clone()
}
}
fn setup() -> (&'static Executor, Trace) {
let trace = Trace::new();
let context = Box::leak(Box::new(trace.clone())) as *mut _ as *mut ();
let executor = &*Box::leak(Box::new(Executor::new(context)));
(executor, trace)
}
#[test]
fn executor_noop() {
let (executor, trace) = setup();
unsafe { executor.poll() };
assert!(trace.get().is_empty())
}
#[test]
fn executor_task() {
#[task]
async fn task1(trace: Trace) {
trace.push("poll task1")
}
let (executor, trace) = setup();
executor.spawner().spawn(task1(trace.clone())).unwrap();
unsafe { executor.poll() };
unsafe { executor.poll() };
assert_eq!(
trace.get(),
&[
"pend", // spawning a task pends the executor
"poll task1", // poll only once.
]
)
}
#[test]
fn executor_task_self_wake() {
#[task]
async fn task1(trace: Trace) {
poll_fn(|cx| {
trace.push("poll task1");
cx.waker().wake_by_ref();
Poll::Pending
})
.await
}
let (executor, trace) = setup();
executor.spawner().spawn(task1(trace.clone())).unwrap();
unsafe { executor.poll() };
unsafe { executor.poll() };
assert_eq!(
trace.get(),
&[
"pend", // spawning a task pends the executor
"poll task1", //
"pend", // task self-wakes
"poll task1", //
"pend", // task self-wakes
]
)
}
#[test]
fn executor_task_self_wake_twice() {
#[task]
async fn task1(trace: Trace) {
poll_fn(|cx| {
trace.push("poll task1");
cx.waker().wake_by_ref();
trace.push("poll task1 wake 2");
cx.waker().wake_by_ref();
Poll::Pending
})
.await
}
let (executor, trace) = setup();
executor.spawner().spawn(task1(trace.clone())).unwrap();
unsafe { executor.poll() };
unsafe { executor.poll() };
assert_eq!(
trace.get(),
&[
"pend", // spawning a task pends the executor
"poll task1", //
"pend", // task self-wakes
"poll task1 wake 2", // task self-wakes again, shouldn't pend
"poll task1", //
"pend", // task self-wakes
"poll task1 wake 2", // task self-wakes again, shouldn't pend
]
)
}

View File

@ -21,4 +21,5 @@ proc-macro2 = "1.0.29"
proc-macro = true
[features]
nightly = []
# Enabling this cause interrupt::take! to require embassy-executor
rtos-trace-interrupt = []

View File

@ -79,7 +79,6 @@ pub fn run(args: &[NestedMeta], f: syn::ItemFn) -> Result<TokenStream, TokenStre
task_inner.vis = syn::Visibility::Inherited;
task_inner.sig.ident = task_inner_ident.clone();
#[cfg(feature = "nightly")]
let mut task_outer: ItemFn = parse_quote! {
#visibility fn #task_ident(#fargs) -> ::embassy_executor::SpawnToken<impl Sized> {
type Fut = impl ::core::future::Future + 'static;
@ -88,14 +87,6 @@ pub fn run(args: &[NestedMeta], f: syn::ItemFn) -> Result<TokenStream, TokenStre
unsafe { POOL._spawn_async_fn(move || #task_inner_ident(#(#arg_names,)*)) }
}
};
#[cfg(not(feature = "nightly"))]
let mut task_outer: ItemFn = parse_quote! {
#visibility fn #task_ident(#fargs) -> ::embassy_executor::SpawnToken<impl Sized> {
const POOL_SIZE: usize = #pool_size;
static POOL: ::embassy_executor::_export::TaskPoolRef = ::embassy_executor::_export::TaskPoolRef::new();
unsafe { POOL.get::<_, POOL_SIZE>()._spawn_async_fn(move || #task_inner_ident(#(#arg_names,)*)) }
}
};
task_outer.attrs.append(&mut task_inner.attrs.clone());

View File

@ -616,11 +616,9 @@ impl<D: Driver> Stack<D> {
let addr = addr.into();
self.with_mut(|s, i| {
let (_hardware_addr, medium) = to_smoltcp_hardware_address(i.device.hardware_address());
let mut smoldev = DriverAdapter {
cx: Some(cx),
inner: &mut i.device,
medium,
};
match s
@ -655,11 +653,9 @@ impl<D: Driver> Stack<D> {
let addr = addr.into();
self.with_mut(|s, i| {
let (_hardware_addr, medium) = to_smoltcp_hardware_address(i.device.hardware_address());
let mut smoldev = DriverAdapter {
cx: Some(cx),
inner: &mut i.device,
medium,
};
match s

View File

@ -58,7 +58,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "a4f293d3a6f72158385f79c98634cb8a14d0d2fc", optional = true }
critical-section = "1.1"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-fbb8f77326dd066aa6c0d66b3b46e76a569dda8b" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-f6d1ffc1a25f208b5cd6b1024bff246592da1949" }
vcell = "0.1.3"
bxcan = "0.7.0"
nb = "1.0.0"
@ -76,7 +76,7 @@ critical-section = { version = "1.1", features = ["std"] }
[build-dependencies]
proc-macro2 = "1.0.36"
quote = "1.0.15"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-fbb8f77326dd066aa6c0d66b3b46e76a569dda8b", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-f6d1ffc1a25f208b5cd6b1024bff246592da1949", default-features = false, features = ["metadata"]}
[features]

View File

@ -61,7 +61,6 @@ fn main() {
let mut singletons: Vec<String> = Vec::new();
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
println!("cargo:rustc-cfg=peri_{}", p.name.to_ascii_lowercase());
match r.kind {
// Generate singletons per pin, not per port
"gpio" => {
@ -1138,6 +1137,23 @@ fn main() {
}
}
// ========
// Write peripheral_interrupts module.
let mut mt = TokenStream::new();
for p in METADATA.peripherals {
let mut pt = TokenStream::new();
for irq in p.interrupts {
let iname = format_ident!("{}", irq.interrupt);
let sname = format_ident!("{}", irq.signal);
pt.extend(quote!(pub type #sname = crate::interrupt::typelevel::#iname;));
}
let pname = format_ident!("{}", p.name);
mt.extend(quote!(pub mod #pname { #pt }));
}
g.extend(quote!(#[allow(non_camel_case_types)] pub mod peripheral_interrupts { #mt }));
// ========
// Write foreach_foo! macrotables
@ -1296,6 +1312,9 @@ fn main() {
let mut m = String::new();
// DO NOT ADD more macros like these.
// These turned to be a bad idea!
// Instead, make build.rs generate the final code.
make_table(&mut m, "foreach_flash_region", &flash_regions_table);
make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table);

View File

@ -1,3 +1,4 @@
use core::cell::{RefCell, RefMut};
use core::future::poll_fn;
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
@ -83,7 +84,7 @@ impl<T: Instance> interrupt::typelevel::Handler<T::SCEInterrupt> for SceInterrup
}
pub struct Can<'d, T: Instance> {
pub can: bxcan::Can<BxcanInstance<'d, T>>,
pub can: RefCell<bxcan::Can<BxcanInstance<'d, T>>>,
}
#[derive(Debug)]
@ -174,12 +175,17 @@ impl<'d, T: Instance> Can<'d, T> {
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
let can = bxcan::Can::builder(BxcanInstance(peri)).leave_disabled();
Self { can }
let can_ref_cell = RefCell::new(can);
Self { can: can_ref_cell }
}
pub fn set_bitrate(&mut self, bitrate: u32) {
let bit_timing = Self::calc_bxcan_timings(T::frequency(), bitrate).unwrap();
self.can.modify_config().set_bit_timing(bit_timing).leave_disabled();
self.can
.borrow_mut()
.modify_config()
.set_bit_timing(bit_timing)
.leave_disabled();
}
/// Enables the peripheral and synchronizes with the bus.
@ -187,7 +193,7 @@ impl<'d, T: Instance> Can<'d, T> {
/// This will wait for 11 consecutive recessive bits (bus idle state).
/// Contrary to enable method from bxcan library, this will not freeze the executor while waiting.
pub async fn enable(&mut self) {
while self.enable_non_blocking().is_err() {
while self.borrow_mut().enable_non_blocking().is_err() {
// SCE interrupt is only generated for entering sleep mode, but not leaving.
// Yield to allow other tasks to execute while can bus is initializing.
embassy_futures::yield_now().await;
@ -196,46 +202,46 @@ impl<'d, T: Instance> Can<'d, T> {
/// Queues the message to be sent but exerts backpressure
pub async fn write(&mut self, frame: &Frame) -> bxcan::TransmitStatus {
self.split().0.write(frame).await
CanTx { can: &self.can }.write(frame).await
}
/// Attempts to transmit a frame without blocking.
///
/// Returns [Err(TryWriteError::Full)] if all transmit mailboxes are full.
pub fn try_write(&mut self, frame: &Frame) -> Result<bxcan::TransmitStatus, TryWriteError> {
self.split().0.try_write(frame)
CanTx { can: &self.can }.try_write(frame)
}
/// Waits for a specific transmit mailbox to become empty
pub async fn flush(&self, mb: bxcan::Mailbox) {
CanTx::<T>::flush_inner(mb).await
CanTx { can: &self.can }.flush(mb).await
}
/// Waits until any of the transmit mailboxes become empty
pub async fn flush_any(&self) {
CanTx::<T>::flush_any_inner().await
CanTx { can: &self.can }.flush_any().await
}
/// Waits until all of the transmit mailboxes become empty
pub async fn flush_all(&self) {
CanTx::<T>::flush_all_inner().await
CanTx { can: &self.can }.flush_all().await
}
/// Returns a tuple of the time the message was received and the message frame
pub async fn read(&mut self) -> Result<Envelope, BusError> {
self.split().1.read().await
CanRx { can: &self.can }.read().await
}
/// Attempts to read a can frame without blocking.
///
/// Returns [Err(TryReadError::Empty)] if there are no frames in the rx queue.
pub fn try_read(&mut self) -> Result<Envelope, TryReadError> {
self.split().1.try_read()
CanRx { can: &self.can }.try_read()
}
/// Waits while receive queue is empty.
pub async fn wait_not_empty(&mut self) {
self.split().1.wait_not_empty().await
CanRx { can: &self.can }.wait_not_empty().await
}
unsafe fn receive_fifo(fifo: RxFifo) {
@ -379,25 +385,24 @@ impl<'d, T: Instance> Can<'d, T> {
Some((sjw - 1) << 24 | (bs1 as u32 - 1) << 16 | (bs2 as u32 - 1) << 20 | (prescaler - 1))
}
pub fn split<'c>(&'c mut self) -> (CanTx<'c, 'd, T>, CanRx<'c, 'd, T>) {
let (tx, rx0, rx1) = self.can.split_by_ref();
(CanTx { tx }, CanRx { rx0, rx1 })
pub fn split<'c>(&'c self) -> (CanTx<'c, 'd, T>, CanRx<'c, 'd, T>) {
(CanTx { can: &self.can }, CanRx { can: &self.can })
}
pub fn as_mut(&mut self) -> &mut bxcan::Can<BxcanInstance<'d, T>> {
&mut self.can
pub fn as_mut(&self) -> RefMut<'_, bxcan::Can<BxcanInstance<'d, T>>> {
self.can.borrow_mut()
}
}
pub struct CanTx<'c, 'd, T: Instance> {
tx: &'c mut bxcan::Tx<BxcanInstance<'d, T>>,
can: &'c RefCell<bxcan::Can<BxcanInstance<'d, T>>>,
}
impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
pub async fn write(&mut self, frame: &Frame) -> bxcan::TransmitStatus {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
if let Ok(status) = self.tx.transmit(frame) {
if let Ok(status) = self.can.borrow_mut().transmit(frame) {
return Poll::Ready(status);
}
@ -410,10 +415,11 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
///
/// Returns [Err(TryWriteError::Full)] if all transmit mailboxes are full.
pub fn try_write(&mut self, frame: &Frame) -> Result<bxcan::TransmitStatus, TryWriteError> {
self.tx.transmit(frame).map_err(|_| TryWriteError::Full)
self.can.borrow_mut().transmit(frame).map_err(|_| TryWriteError::Full)
}
async fn flush_inner(mb: bxcan::Mailbox) {
/// Waits for a specific transmit mailbox to become empty
pub async fn flush(&self, mb: bxcan::Mailbox) {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
if T::regs().tsr().read().tme(mb.index()) {
@ -425,12 +431,8 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
.await;
}
/// Waits for a specific transmit mailbox to become empty
pub async fn flush(&self, mb: bxcan::Mailbox) {
Self::flush_inner(mb).await
}
async fn flush_any_inner() {
/// Waits until any of the transmit mailboxes become empty
pub async fn flush_any(&self) {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
@ -447,12 +449,8 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
.await;
}
/// Waits until any of the transmit mailboxes become empty
pub async fn flush_any(&self) {
Self::flush_any_inner().await
}
async fn flush_all_inner() {
/// Waits until all of the transmit mailboxes become empty
pub async fn flush_all(&self) {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
@ -468,17 +466,11 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
})
.await;
}
/// Waits until all of the transmit mailboxes become empty
pub async fn flush_all(&self) {
Self::flush_all_inner().await
}
}
#[allow(dead_code)]
pub struct CanRx<'c, 'd, T: Instance> {
rx0: &'c mut bxcan::Rx0<BxcanInstance<'d, T>>,
rx1: &'c mut bxcan::Rx1<BxcanInstance<'d, T>>,
can: &'c RefCell<bxcan::Can<BxcanInstance<'d, T>>>,
}
impl<'c, 'd, T: Instance> CanRx<'c, 'd, T> {
@ -546,7 +538,7 @@ impl<'d, T: Instance> Drop for Can<'d, T> {
}
impl<'d, T: Instance> Deref for Can<'d, T> {
type Target = bxcan::Can<BxcanInstance<'d, T>>;
type Target = RefCell<bxcan::Can<BxcanInstance<'d, T>>>;
fn deref(&self) -> &Self::Target {
&self.can

View File

@ -1,11 +1,14 @@
#![macro_use]
use core::marker::PhantomData;
use crate::interrupt;
#[cfg_attr(i2c_v1, path = "v1.rs")]
#[cfg_attr(i2c_v2, path = "v2.rs")]
mod _version;
pub use _version::*;
use embassy_sync::waitqueue::AtomicWaker;
use crate::peripherals;
@ -23,6 +26,20 @@ pub enum Error {
pub(crate) mod sealed {
use super::*;
pub struct State {
#[allow(unused)]
pub waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub trait Instance: crate::rcc::RccPeripheral {
fn regs() -> crate::pac::i2c::I2c;
fn state() -> &'static State;
@ -30,7 +47,8 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + 'static {
type Interrupt: interrupt::typelevel::Interrupt;
type EventInterrupt: interrupt::typelevel::Interrupt;
type ErrorInterrupt: interrupt::typelevel::Interrupt;
}
pin_trait!(SclPin, Instance);
@ -38,21 +56,148 @@ pin_trait!(SdaPin, Instance);
dma_trait!(RxDma, Instance);
dma_trait!(TxDma, Instance);
foreach_interrupt!(
($inst:ident, i2c, $block:ident, EV, $irq:ident) => {
/// Interrupt handler.
pub struct EventInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::EventInterrupt> for EventInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
pub struct ErrorInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::ErrorInterrupt> for ErrorInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
foreach_peripheral!(
(i2c, $inst:ident) => {
impl sealed::Instance for peripherals::$inst {
fn regs() -> crate::pac::i2c::I2c {
crate::pac::$inst
}
fn state() -> &'static State {
static STATE: State = State::new();
fn state() -> &'static sealed::State {
static STATE: sealed::State = sealed::State::new();
&STATE
}
}
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
type EventInterrupt = crate::_generated::peripheral_interrupts::$inst::EV;
type ErrorInterrupt = crate::_generated::peripheral_interrupts::$inst::ER;
}
};
);
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
use crate::dma::NoDma;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly", feature = "time"))]
mod eha {
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}

View File

@ -1,23 +1,33 @@
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::dma::NoDma;
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
// i2c v2 only woke the task on transfer complete interrupts. v1 uses interrupts for a bunch of
// other stuff, so we wake the task on every interrupt.
T::state().waker.wake();
critical_section::with(|_| {
// Clear event interrupt flag.
regs.cr2().modify(|w| {
w.set_itevten(false);
w.set_iterren(false);
});
});
}
#[non_exhaustive]
@ -27,14 +37,6 @@ pub struct Config {
pub scl_pullup: bool,
}
pub struct State {}
impl State {
pub(crate) const fn new() -> Self {
Self {}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
phantom: PhantomData<&'d mut T>,
#[allow(dead_code)]
@ -48,7 +50,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -98,6 +102,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
phantom: PhantomData,
tx_dma,
@ -105,40 +112,58 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> {
fn check_and_clear_error_flags() -> Result<i2c::regs::Sr1, Error> {
// Note that flags should only be cleared once they have been registered. If flags are
// cleared otherwise, there may be an inherent race condition and flags may be missed.
let sr1 = T::regs().sr1().read();
if sr1.timeout() {
T::regs().sr1().modify(|reg| reg.set_timeout(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_timeout(false);
});
return Err(Error::Timeout);
}
if sr1.pecerr() {
T::regs().sr1().modify(|reg| reg.set_pecerr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_pecerr(false);
});
return Err(Error::Crc);
}
if sr1.ovr() {
T::regs().sr1().modify(|reg| reg.set_ovr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_ovr(false);
});
return Err(Error::Overrun);
}
if sr1.af() {
T::regs().sr1().modify(|reg| reg.set_af(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_af(false);
});
return Err(Error::Nack);
}
if sr1.arlo() {
T::regs().sr1().modify(|reg| reg.set_arlo(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_arlo(false);
});
return Err(Error::Arbitration);
}
// The errata indicates that BERR may be incorrectly detected. It recommends ignoring and
// clearing the BERR bit instead.
if sr1.berr() {
T::regs().sr1().modify(|reg| reg.set_berr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_berr(false);
});
}
Ok(sr1)
@ -157,13 +182,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
// Also wait until signalled we're master and everything is waiting for us
while {
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
@ -177,7 +202,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -197,7 +222,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we're ready for sending
while {
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
!self.check_and_clear_error_flags()?.txe()
!Self::check_and_clear_error_flags()?.txe()
} {
check_timeout()?;
}
@ -208,7 +233,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until byte is transferred
while {
// Check for any potential error conditions.
!self.check_and_clear_error_flags()?.btf()
!Self::check_and_clear_error_flags()?.btf()
} {
check_timeout()?;
}
@ -219,7 +244,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
while {
// Check for any potential error conditions.
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
!T::regs().sr1().read().rxne()
} {
@ -244,7 +269,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
@ -261,7 +286,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -336,6 +361,322 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(addr, write, read, || Ok(()))
}
// Async
#[inline] // pretty sure this should always be inlined
fn enable_interrupts() -> () {
T::regs().cr2().modify(|w| {
w.set_iterren(true);
w.set_itevten(true);
});
}
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
w.set_itbufen(false);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let dst = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.tx_dma;
let request = ch.request();
Transfer::new_write(ch, request, write, dst, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
let state = T::state();
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr(address << 1));
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// Clear the ADDR condition by reading SR2.
T::regs().sr2().read();
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other
// identical poll_fn check_and_clear matches.
Err(e) => Poll::Ready(Err::<T, Error>(e)),
Ok(_) => Poll::Pending,
}
});
// Wait for either the DMA transfer to successfully finish, or an I2C error to occur.
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.btf() {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
let state = T::state();
let buffer_len = buffer.len();
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_itbufen(false);
w.set_dmaen(true);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
Transfer::new_read(ch, request, src, buffer, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition and set ACK bit
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// blocking read didnt have a check_and_clear call here, but blocking write did so
// Im adding it here in case that was an oversight.
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag. Then the
// user can program the STOP condition either after clearing ADDR flag, or in the
// DMA Transfer Complete interrupt routine.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Clear condition by reading SR2
T::regs().sr2().read();
// Wait for bytes to be received, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)),
_ => Poll::Pending,
}
});
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
};
// v1 blocking waits for STOP to be written, the manual says to write the STOP bit yourself.
// what to do…
// Wait for the STOP to be sent.
// while T::regs().cr1().read().stop() {
// check_timeout()?;
// }
// Fallthrough is success
Ok(())
}
pub async fn write_read(&mut self, _address: u8, _write: &[u8], _read: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
todo!()
}
}
impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
@ -344,77 +685,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(addr, read)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, addr: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(addr, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(addr, write, read)
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for I2c<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
enum Mode {
Fast,
Standard,

View File

@ -1,19 +1,17 @@
use core::cmp;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
@ -36,25 +34,18 @@ pub fn no_timeout_fn() -> impl Fn() -> Result<(), Error> {
move || Ok(())
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
let isr = regs.isr().read();
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let regs = T::regs();
let isr = regs.isr().read();
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
}
#[non_exhaustive]
@ -77,18 +68,6 @@ impl Default for Config {
}
}
pub struct State {
waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
_peri: PeripheralRef<'d, T>,
#[allow(dead_code)]
@ -104,7 +83,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -150,8 +131,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
_peri: peri,
@ -987,35 +968,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
#[cfg(feature = "time")]
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
/// I2C Stop Configuration
///
/// Peripheral options for generating the STOP condition
@ -1140,83 +1092,6 @@ impl Timings {
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::super::{RxDma, TxDma};
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}
impl<'d, T: Instance> SetConfig for I2c<'d, T> {
type Config = Hertz;
type ConfigError = ();

View File

@ -31,9 +31,12 @@ impl From<OpAmpSpeed> for crate::pac::opamp::vals::OpampCsrOpahsm {
/// OpAmp external outputs, wired to a GPIO pad.
///
/// The GPIO output pad is held by this struct to ensure it cannot be used elsewhere.
///
/// This struct can also be used as an ADC input.
pub struct OpAmpOutput<'d, T: Instance> {
pub struct OpAmpOutput<'d, 'p, T: Instance, P: OutputPin<T>> {
_inner: &'d OpAmp<'d, T>,
_output: &'p mut P,
}
/// OpAmp internal outputs, wired directly to ADC inputs.
@ -51,12 +54,19 @@ pub struct OpAmp<'d, T: Instance> {
impl<'d, T: Instance> OpAmp<'d, T> {
/// Create a new driver instance.
///
/// Does not enable the opamp, but does set the speed mode on some families.
/// Enables the OpAmp and configures the speed, but
/// does not set any other configuration.
pub fn new(opamp: impl Peripheral<P = T> + 'd, #[cfg(opamp_g4)] speed: OpAmpSpeed) -> Self {
into_ref!(opamp);
#[cfg(opamp_f3)]
T::regs().opampcsr().modify(|w| {
w.set_opampen(true);
});
#[cfg(opamp_g4)]
T::regs().opamp_csr().modify(|w| {
w.set_opaen(true);
w.set_opahsm(speed.into());
});
@ -64,23 +74,24 @@ impl<'d, T: Instance> OpAmp<'d, T> {
}
/// Configure the OpAmp as a buffer for the provided input pin,
/// outputting to the provided output pin, and enable the opamp.
/// outputting to the provided output pin.
///
/// The input pin is configured for analogue mode but not consumed,
/// so it may subsequently be used for ADC or comparator inputs.
///
/// The output pin is held within the returned [`OpAmpOutput`] struct,
/// preventing it being used elsewhere. The `OpAmpOutput` can then be
/// directly used as an ADC input. The opamp will be disabled when the
/// [`OpAmpOutput`] is dropped.
pub fn buffer_ext(
&'d mut self,
in_pin: impl Peripheral<P = impl NonInvertingPin<T> + crate::gpio::sealed::Pin>,
out_pin: impl Peripheral<P = impl OutputPin<T> + crate::gpio::sealed::Pin> + 'd,
/// directly used as an ADC input.
pub fn buffer_ext<'a, 'b, IP, OP>(
&'a mut self,
in_pin: &IP,
out_pin: &'b mut OP,
gain: OpAmpGain,
) -> OpAmpOutput<'d, T> {
into_ref!(in_pin);
into_ref!(out_pin);
) -> OpAmpOutput<'a, 'b, T, OP>
where
IP: NonInvertingPin<T> + crate::gpio::sealed::Pin,
OP: OutputPin<T> + crate::gpio::sealed::Pin,
{
in_pin.set_as_analog();
out_pin.set_as_analog();
@ -111,24 +122,24 @@ impl<'d, T: Instance> OpAmp<'d, T> {
w.set_opaen(true);
});
OpAmpOutput { _inner: self }
OpAmpOutput {
_inner: self,
_output: out_pin,
}
}
/// Configure the OpAmp as a buffer for the provided input pin,
/// with the output only used internally, and enable the opamp.
/// with the output only used internally.
///
/// The input pin is configured for analogue mode but not consumed,
/// so it may be subsequently used for ADC or comparator inputs.
///
/// The returned `OpAmpInternalOutput` struct may be used as an ADC input.
/// The opamp output will be disabled when it is dropped.
#[cfg(opamp_g4)]
pub fn buffer_int(
&'d mut self,
pin: impl Peripheral<P = impl NonInvertingPin<T> + crate::gpio::sealed::Pin>,
gain: OpAmpGain,
) -> OpAmpInternalOutput<'d, T> {
into_ref!(pin);
pub fn buffer_int<'a, P>(&'a mut self, pin: &P, gain: OpAmpGain) -> OpAmpInternalOutput<'a, T>
where
P: NonInvertingPin<T> + crate::gpio::sealed::Pin,
{
pin.set_as_analog();
let (vm_sel, pga_gain) = match gain {
@ -152,21 +163,7 @@ impl<'d, T: Instance> OpAmp<'d, T> {
}
}
impl<'d, T: Instance> Drop for OpAmpOutput<'d, T> {
fn drop(&mut self) {
#[cfg(opamp_f3)]
T::regs().opampcsr().modify(|w| {
w.set_opampen(false);
});
#[cfg(opamp_g4)]
T::regs().opamp_csr().modify(|w| {
w.set_opaen(false);
});
}
}
impl<'d, T: Instance> Drop for OpAmpInternalOutput<'d, T> {
impl<'d, T: Instance> Drop for OpAmp<'d, T> {
fn drop(&mut self) {
#[cfg(opamp_f3)]
T::regs().opampcsr().modify(|w| {
@ -206,16 +203,16 @@ macro_rules! impl_opamp_external_output {
($inst:ident, $adc:ident, $ch:expr) => {
foreach_adc!(
($adc, $common_inst:ident, $adc_clock:ident) => {
impl<'d> crate::adc::sealed::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, crate::peripherals::$inst>
impl<'d, 'p, P: OutputPin<crate::peripherals::$inst>> crate::adc::sealed::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, 'p, crate::peripherals::$inst, P>
{
fn channel(&self) -> u8 {
$ch
}
}
impl<'d> crate::adc::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, crate::peripherals::$inst>
impl<'d, 'p, P: OutputPin<crate::peripherals::$inst>> crate::adc::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, 'p, crate::peripherals::$inst, P>
{
}
};

View File

@ -168,12 +168,7 @@ impl Default for Config {
apb4_pre: APBPrescaler::DIV1,
per_clock_source: PerClockSource::HSI,
#[cfg(stm32h5)]
adc_clock_source: AdcClockSource::HCLK1,
#[cfg(stm32h7)]
adc_clock_source: AdcClockSource::PER,
adc_clock_source: AdcClockSource::from_bits(0), // PLL2_P on H7, HCLK on H5
timer_prescaler: TimerPrescaler::DefaultX2,
voltage_scale: VoltageScale::Scale0,
ls: Default::default(),

View File

@ -207,40 +207,27 @@ impl Protocol {
}
#[derive(Copy, Clone, PartialEq)]
pub enum SyncInput {
/// Not synced to any other SAI unit.
None,
pub enum SyncEnable {
Asynchronous,
/// Syncs with the other A/B sub-block within the SAI unit
Internal,
/// Syncs with a sub-block in the other SAI unit
#[cfg(sai_v4)]
External(SyncInputInstance),
/// Syncs with a sub-block in the other SAI unit - use set_sync_output() and set_sync_input()
#[cfg(any(sai_v4))]
External,
}
impl SyncInput {
impl SyncEnable {
#[cfg(any(sai_v1, sai_v2, sai_v3, sai_v4))]
pub const fn syncen(&self) -> vals::Syncen {
match self {
SyncInput::None => vals::Syncen::ASYNCHRONOUS,
SyncInput::Internal => vals::Syncen::INTERNAL,
SyncEnable::Asynchronous => vals::Syncen::ASYNCHRONOUS,
SyncEnable::Internal => vals::Syncen::INTERNAL,
#[cfg(any(sai_v4))]
SyncInput::External(_) => vals::Syncen::EXTERNAL,
SyncEnable::External => vals::Syncen::EXTERNAL,
}
}
}
#[cfg(sai_v4)]
#[derive(Copy, Clone, PartialEq)]
pub enum SyncInputInstance {
#[cfg(peri_sai1)]
Sai1 = 0,
#[cfg(peri_sai2)]
Sai2 = 1,
#[cfg(peri_sai3)]
Sai3 = 2,
#[cfg(peri_sai4)]
Sai4 = 3,
}
#[derive(Copy, Clone, PartialEq)]
pub enum StereoMono {
Stereo,
@ -441,8 +428,8 @@ impl MasterClockDivider {
pub struct Config {
pub mode: Mode,
pub tx_rx: TxRx,
pub sync_input: SyncInput,
pub sync_output: bool,
pub sync_enable: SyncEnable,
pub is_sync_output: bool,
pub protocol: Protocol,
pub slot_size: SlotSize,
pub slot_count: word::U4,
@ -472,8 +459,8 @@ impl Default for Config {
Self {
mode: Mode::Master,
tx_rx: TxRx::Transmitter,
sync_output: false,
sync_input: SyncInput::None,
is_sync_output: false,
sync_enable: SyncEnable::Asynchronous,
protocol: Protocol::Free,
slot_size: SlotSize::DataSize,
slot_count: word::U4(2),
@ -621,18 +608,18 @@ impl<'d, T: Instance> Sai<'d, T> {
fn update_synchronous_config(config: &mut Config) {
config.mode = Mode::Slave;
config.sync_output = false;
config.is_sync_output = false;
#[cfg(any(sai_v1, sai_v2, sai_v3))]
{
config.sync_input = SyncInput::Internal;
config.sync_enable = SyncEnable::Internal;
}
#[cfg(any(sai_v4))]
{
//this must either be Internal or External
//The asynchronous sub-block on the same SAI needs to enable sync_output
assert!(config.sync_input != SyncInput::None);
//The asynchronous sub-block on the same SAI needs to enable is_sync_output
assert!(config.sync_enable != SyncEnable::Asynchronous);
}
}
@ -879,13 +866,20 @@ impl<'d, T: Instance, C: Channel, W: word::Word> SubBlock<'d, T, C, W> {
#[cfg(any(sai_v4))]
{
if let SyncInput::External(i) = config.sync_input {
T::REGS.gcr().modify(|w| {
w.set_syncin(i as u8);
});
}
// Not totally clear from the datasheet if this is right
// This is only used if using SyncEnable::External on the other SAI unit
// Syncing from SAIX subblock A to subblock B does not require this
// Only syncing from SAI1 subblock A/B to SAI2 subblock A/B
let value: u8 = if T::REGS.as_ptr() == stm32_metapac::SAI1.as_ptr() {
1 //this is SAI1, so sync with SAI2
} else {
0 //this is SAI2, so sync with SAI1
};
T::REGS.gcr().modify(|w| {
w.set_syncin(value);
});
if config.sync_output {
if config.is_sync_output {
let syncout: u8 = match sub_block {
WhichSubBlock::A => 0b01,
WhichSubBlock::B => 0b10,
@ -909,7 +903,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> SubBlock<'d, T, C, W> {
w.set_ds(config.data_size.ds());
w.set_lsbfirst(config.bit_order.lsbfirst());
w.set_ckstr(config.clock_strobe.ckstr());
w.set_syncen(config.sync_input.syncen());
w.set_syncen(config.sync_enable.syncen());
w.set_mono(config.stereo_mono.mono());
w.set_outdriv(config.output_drive.outdriv());
w.set_mckdiv(config.master_clock_divider.mckdiv());

View File

@ -5,7 +5,6 @@ An [Embassy](https://embassy.dev) project.
Synchronization primitives and data structures with async support:
- [`Channel`](channel::Channel) - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single consumer.
- [`PriorityChannel`](channel::priority::PriorityChannel) - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single consumer. Higher priority items are sifted to the front of the channel.
- [`PubSubChannel`](pubsub::PubSubChannel) - A broadcast channel (publish-subscribe) channel. Each message is received by all consumers.
- [`Signal`](signal::Signal) - Signalling latest value to a single consumer.
- [`Mutex`](mutex::Mutex) - Mutex for synchronizing state between asynchronous tasks.

View File

@ -76,7 +76,7 @@ where
/// Send-only access to a [`Channel`] without knowing channel size.
pub struct DynamicSender<'ch, T> {
pub(crate) channel: &'ch dyn DynamicChannel<T>,
channel: &'ch dyn DynamicChannel<T>,
}
impl<'ch, T> Clone for DynamicSender<'ch, T> {
@ -176,7 +176,7 @@ where
/// Receive-only access to a [`Channel`] without knowing channel size.
pub struct DynamicReceiver<'ch, T> {
pub(crate) channel: &'ch dyn DynamicChannel<T>,
channel: &'ch dyn DynamicChannel<T>,
}
impl<'ch, T> Clone for DynamicReceiver<'ch, T> {
@ -321,7 +321,7 @@ impl<'ch, T> Future for DynamicSendFuture<'ch, T> {
impl<'ch, T> Unpin for DynamicSendFuture<'ch, T> {}
pub(crate) trait DynamicChannel<T> {
trait DynamicChannel<T> {
fn try_send_with_context(&self, message: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>>;
fn try_receive_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError>;

View File

@ -15,7 +15,6 @@ pub mod blocking_mutex;
pub mod channel;
pub mod mutex;
pub mod pipe;
pub mod priority_channel;
pub mod pubsub;
pub mod signal;
pub mod waitqueue;

View File

@ -1,613 +0,0 @@
//! A queue for sending values between asynchronous tasks.
//!
//! Similar to a [`Channel`](crate::channel::Channel), however [`PriorityChannel`] sifts higher priority items to the front of the queue.
//! Priority is determined by the `Ord` trait. Priority behavior is determined by the [`Kind`](heapless::binary_heap::Kind) parameter of the channel.
use core::cell::RefCell;
use core::future::Future;
use core::pin::Pin;
use core::task::{Context, Poll};
pub use heapless::binary_heap::{Kind, Max, Min};
use heapless::BinaryHeap;
use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex;
use crate::channel::{DynamicChannel, DynamicReceiver, DynamicSender, TryReceiveError, TrySendError};
use crate::waitqueue::WakerRegistration;
/// Send-only access to a [`PriorityChannel`].
pub struct Sender<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
}
impl<'ch, M, T, K, const N: usize> Clone for Sender<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn clone(&self) -> Self {
Sender { channel: self.channel }
}
}
impl<'ch, M, T, K, const N: usize> Copy for Sender<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
}
impl<'ch, M, T, K, const N: usize> Sender<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
/// Sends a value.
///
/// See [`PriorityChannel::send()`]
pub fn send(&self, message: T) -> SendFuture<'ch, M, T, K, N> {
self.channel.send(message)
}
/// Attempt to immediately send a message.
///
/// See [`PriorityChannel::send()`]
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
self.channel.try_send(message)
}
/// Allows a poll_fn to poll until the channel is ready to send
///
/// See [`PriorityChannel::poll_ready_to_send()`]
pub fn poll_ready_to_send(&self, cx: &mut Context<'_>) -> Poll<()> {
self.channel.poll_ready_to_send(cx)
}
}
impl<'ch, M, T, K, const N: usize> From<Sender<'ch, M, T, K, N>> for DynamicSender<'ch, T>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn from(s: Sender<'ch, M, T, K, N>) -> Self {
Self { channel: s.channel }
}
}
/// Receive-only access to a [`PriorityChannel`].
pub struct Receiver<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
}
impl<'ch, M, T, K, const N: usize> Clone for Receiver<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn clone(&self) -> Self {
Receiver { channel: self.channel }
}
}
impl<'ch, M, T, K, const N: usize> Copy for Receiver<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
}
impl<'ch, M, T, K, const N: usize> Receiver<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
/// Receive the next value.
///
/// See [`PriorityChannel::receive()`].
pub fn receive(&self) -> ReceiveFuture<'_, M, T, K, N> {
self.channel.receive()
}
/// Attempt to immediately receive the next value.
///
/// See [`PriorityChannel::try_receive()`]
pub fn try_receive(&self) -> Result<T, TryReceiveError> {
self.channel.try_receive()
}
/// Allows a poll_fn to poll until the channel is ready to receive
///
/// See [`PriorityChannel::poll_ready_to_receive()`]
pub fn poll_ready_to_receive(&self, cx: &mut Context<'_>) -> Poll<()> {
self.channel.poll_ready_to_receive(cx)
}
/// Poll the channel for the next item
///
/// See [`PriorityChannel::poll_receive()`]
pub fn poll_receive(&self, cx: &mut Context<'_>) -> Poll<T> {
self.channel.poll_receive(cx)
}
}
impl<'ch, M, T, K, const N: usize> From<Receiver<'ch, M, T, K, N>> for DynamicReceiver<'ch, T>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn from(s: Receiver<'ch, M, T, K, N>) -> Self {
Self { channel: s.channel }
}
}
/// Future returned by [`PriorityChannel::receive`] and [`Receiver::receive`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct ReceiveFuture<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
}
impl<'ch, M, T, K, const N: usize> Future for ReceiveFuture<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
self.channel.poll_receive(cx)
}
}
/// Future returned by [`PriorityChannel::send`] and [`Sender::send`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct SendFuture<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
message: Option<T>,
}
impl<'ch, M, T, K, const N: usize> Future for SendFuture<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.message.take() {
Some(m) => match self.channel.try_send_with_context(m, Some(cx)) {
Ok(..) => Poll::Ready(()),
Err(TrySendError::Full(m)) => {
self.message = Some(m);
Poll::Pending
}
},
None => panic!("Message cannot be None"),
}
}
}
impl<'ch, M, T, K, const N: usize> Unpin for SendFuture<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
}
struct ChannelState<T, K, const N: usize> {
queue: BinaryHeap<T, K, N>,
receiver_waker: WakerRegistration,
senders_waker: WakerRegistration,
}
impl<T, K, const N: usize> ChannelState<T, K, N>
where
T: Ord,
K: Kind,
{
const fn new() -> Self {
ChannelState {
queue: BinaryHeap::new(),
receiver_waker: WakerRegistration::new(),
senders_waker: WakerRegistration::new(),
}
}
fn try_receive(&mut self) -> Result<T, TryReceiveError> {
self.try_receive_with_context(None)
}
fn try_receive_with_context(&mut self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError> {
if self.queue.len() == self.queue.capacity() {
self.senders_waker.wake();
}
if let Some(message) = self.queue.pop() {
Ok(message)
} else {
if let Some(cx) = cx {
self.receiver_waker.register(cx.waker());
}
Err(TryReceiveError::Empty)
}
}
fn poll_receive(&mut self, cx: &mut Context<'_>) -> Poll<T> {
if self.queue.len() == self.queue.capacity() {
self.senders_waker.wake();
}
if let Some(message) = self.queue.pop() {
Poll::Ready(message)
} else {
self.receiver_waker.register(cx.waker());
Poll::Pending
}
}
fn poll_ready_to_receive(&mut self, cx: &mut Context<'_>) -> Poll<()> {
self.receiver_waker.register(cx.waker());
if !self.queue.is_empty() {
Poll::Ready(())
} else {
Poll::Pending
}
}
fn try_send(&mut self, message: T) -> Result<(), TrySendError<T>> {
self.try_send_with_context(message, None)
}
fn try_send_with_context(&mut self, message: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>> {
match self.queue.push(message) {
Ok(()) => {
self.receiver_waker.wake();
Ok(())
}
Err(message) => {
if let Some(cx) = cx {
self.senders_waker.register(cx.waker());
}
Err(TrySendError::Full(message))
}
}
}
fn poll_ready_to_send(&mut self, cx: &mut Context<'_>) -> Poll<()> {
self.senders_waker.register(cx.waker());
if !self.queue.len() == self.queue.capacity() {
Poll::Ready(())
} else {
Poll::Pending
}
}
}
/// A bounded channel for communicating between asynchronous tasks
/// with backpressure.
///
/// The channel will buffer up to the provided number of messages. Once the
/// buffer is full, attempts to `send` new messages will wait until a message is
/// received from the channel.
///
/// Sent data may be reordered based on their priorty within the channel.
/// For example, in a [`Max`](heapless::binary_heap::Max) [`PriorityChannel`]
/// containing `u32`'s, data sent in the following order `[1, 2, 3]` will be recieved as `[3, 2, 1]`.
pub struct PriorityChannel<M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
inner: Mutex<M, RefCell<ChannelState<T, K, N>>>,
}
impl<M, T, K, const N: usize> PriorityChannel<M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
/// Establish a new bounded channel. For example, to create one with a NoopMutex:
///
/// ```
/// use embassy_sync::priority_channel::{PriorityChannel, Max};
/// use embassy_sync::blocking_mutex::raw::NoopRawMutex;
///
/// // Declare a bounded channel of 3 u32s.
/// let mut channel = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
/// ```
pub const fn new() -> Self {
Self {
inner: Mutex::new(RefCell::new(ChannelState::new())),
}
}
fn lock<R>(&self, f: impl FnOnce(&mut ChannelState<T, K, N>) -> R) -> R {
self.inner.lock(|rc| f(&mut *unwrap!(rc.try_borrow_mut())))
}
fn try_receive_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError> {
self.lock(|c| c.try_receive_with_context(cx))
}
/// Poll the channel for the next message
pub fn poll_receive(&self, cx: &mut Context<'_>) -> Poll<T> {
self.lock(|c| c.poll_receive(cx))
}
fn try_send_with_context(&self, m: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>> {
self.lock(|c| c.try_send_with_context(m, cx))
}
/// Allows a poll_fn to poll until the channel is ready to receive
pub fn poll_ready_to_receive(&self, cx: &mut Context<'_>) -> Poll<()> {
self.lock(|c| c.poll_ready_to_receive(cx))
}
/// Allows a poll_fn to poll until the channel is ready to send
pub fn poll_ready_to_send(&self, cx: &mut Context<'_>) -> Poll<()> {
self.lock(|c| c.poll_ready_to_send(cx))
}
/// Get a sender for this channel.
pub fn sender(&self) -> Sender<'_, M, T, K, N> {
Sender { channel: self }
}
/// Get a receiver for this channel.
pub fn receiver(&self) -> Receiver<'_, M, T, K, N> {
Receiver { channel: self }
}
/// Send a value, waiting until there is capacity.
///
/// Sending completes when the value has been pushed to the channel's queue.
/// This doesn't mean the value has been received yet.
pub fn send(&self, message: T) -> SendFuture<'_, M, T, K, N> {
SendFuture {
channel: self,
message: Some(message),
}
}
/// Attempt to immediately send a message.
///
/// This method differs from [`send`](PriorityChannel::send) by returning immediately if the channel's
/// buffer is full, instead of waiting.
///
/// # Errors
///
/// If the channel capacity has been reached, i.e., the channel has `n`
/// buffered values where `n` is the argument passed to [`PriorityChannel`], then an
/// error is returned.
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
self.lock(|c| c.try_send(message))
}
/// Receive the next value.
///
/// If there are no messages in the channel's buffer, this method will
/// wait until a message is sent.
pub fn receive(&self) -> ReceiveFuture<'_, M, T, K, N> {
ReceiveFuture { channel: self }
}
/// Attempt to immediately receive a message.
///
/// This method will either receive a message from the channel immediately or return an error
/// if the channel is empty.
pub fn try_receive(&self) -> Result<T, TryReceiveError> {
self.lock(|c| c.try_receive())
}
}
/// Implements the DynamicChannel to allow creating types that are unaware of the queue size with the
/// tradeoff cost of dynamic dispatch.
impl<M, T, K, const N: usize> DynamicChannel<T> for PriorityChannel<M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn try_send_with_context(&self, m: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>> {
PriorityChannel::try_send_with_context(self, m, cx)
}
fn try_receive_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError> {
PriorityChannel::try_receive_with_context(self, cx)
}
fn poll_ready_to_send(&self, cx: &mut Context<'_>) -> Poll<()> {
PriorityChannel::poll_ready_to_send(self, cx)
}
fn poll_ready_to_receive(&self, cx: &mut Context<'_>) -> Poll<()> {
PriorityChannel::poll_ready_to_receive(self, cx)
}
fn poll_receive(&self, cx: &mut Context<'_>) -> Poll<T> {
PriorityChannel::poll_receive(self, cx)
}
}
#[cfg(test)]
mod tests {
use core::time::Duration;
use futures_executor::ThreadPool;
use futures_timer::Delay;
use futures_util::task::SpawnExt;
use heapless::binary_heap::{Kind, Max};
use static_cell::StaticCell;
use super::*;
use crate::blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex};
fn capacity<T, K, const N: usize>(c: &ChannelState<T, K, N>) -> usize
where
T: Ord,
K: Kind,
{
c.queue.capacity() - c.queue.len()
}
#[test]
fn sending_once() {
let mut c = ChannelState::<u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert_eq!(capacity(&c), 2);
}
#[test]
fn sending_when_full() {
let mut c = ChannelState::<u32, Max, 3>::new();
let _ = c.try_send(1);
let _ = c.try_send(1);
let _ = c.try_send(1);
match c.try_send(2) {
Err(TrySendError::Full(2)) => assert!(true),
_ => assert!(false),
}
assert_eq!(capacity(&c), 0);
}
#[test]
fn send_priority() {
// Prio channel with kind `Max` sifts larger numbers to the front of the queue
let mut c = ChannelState::<u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert!(c.try_send(2).is_ok());
assert!(c.try_send(3).is_ok());
assert_eq!(c.try_receive().unwrap(), 3);
assert_eq!(c.try_receive().unwrap(), 2);
assert_eq!(c.try_receive().unwrap(), 1);
}
#[test]
fn receiving_once_with_one_send() {
let mut c = ChannelState::<u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert_eq!(c.try_receive().unwrap(), 1);
assert_eq!(capacity(&c), 3);
}
#[test]
fn receiving_when_empty() {
let mut c = ChannelState::<u32, Max, 3>::new();
match c.try_receive() {
Err(TryReceiveError::Empty) => assert!(true),
_ => assert!(false),
}
assert_eq!(capacity(&c), 3);
}
#[test]
fn simple_send_and_receive() {
let c = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert_eq!(c.try_receive().unwrap(), 1);
}
#[test]
fn cloning() {
let c = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
let r1 = c.receiver();
let s1 = c.sender();
let _ = r1.clone();
let _ = s1.clone();
}
#[test]
fn dynamic_dispatch() {
let c = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
let s: DynamicSender<'_, u32> = c.sender().into();
let r: DynamicReceiver<'_, u32> = c.receiver().into();
assert!(s.try_send(1).is_ok());
assert_eq!(r.try_receive().unwrap(), 1);
}
#[futures_test::test]
async fn receiver_receives_given_try_send_async() {
let executor = ThreadPool::new().unwrap();
static CHANNEL: StaticCell<PriorityChannel<CriticalSectionRawMutex, u32, Max, 3>> = StaticCell::new();
let c = &*CHANNEL.init(PriorityChannel::new());
let c2 = c;
assert!(executor
.spawn(async move {
assert!(c2.try_send(1).is_ok());
})
.is_ok());
assert_eq!(c.receive().await, 1);
}
#[futures_test::test]
async fn sender_send_completes_if_capacity() {
let c = PriorityChannel::<CriticalSectionRawMutex, u32, Max, 1>::new();
c.send(1).await;
assert_eq!(c.receive().await, 1);
}
#[futures_test::test]
async fn senders_sends_wait_until_capacity() {
let executor = ThreadPool::new().unwrap();
static CHANNEL: StaticCell<PriorityChannel<CriticalSectionRawMutex, u32, Max, 1>> = StaticCell::new();
let c = &*CHANNEL.init(PriorityChannel::new());
assert!(c.try_send(1).is_ok());
let c2 = c;
let send_task_1 = executor.spawn_with_handle(async move { c2.send(2).await });
let c2 = c;
let send_task_2 = executor.spawn_with_handle(async move { c2.send(3).await });
// Wish I could think of a means of determining that the async send is waiting instead.
// However, I've used the debugger to observe that the send does indeed wait.
Delay::new(Duration::from_millis(500)).await;
assert_eq!(c.receive().await, 1);
assert!(executor
.spawn(async move {
loop {
c.receive().await;
}
})
.is_ok());
send_task_1.unwrap().await;
send_task_2.unwrap().await;
}
}

View File

@ -5,19 +5,7 @@ MEMORY
BOOTLOADER_STATE : ORIGIN = 0x10006000, LENGTH = 4K
FLASH : ORIGIN = 0x10007000, LENGTH = 512K
DFU : ORIGIN = 0x10087000, LENGTH = 516K
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
RAM : ORIGIN = 0x20000000, LENGTH = 256K
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE) - ORIGIN(BOOT2);

View File

@ -6,19 +6,7 @@ MEMORY
BOOTLOADER_STATE : ORIGIN = 0x10006000, LENGTH = 4K
ACTIVE : ORIGIN = 0x10007000, LENGTH = 512K
DFU : ORIGIN = 0x10087000, LENGTH = 516K
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
RAM : ORIGIN = 0x20000000, LENGTH = 256K
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE) - ORIGIN(BOOT2);

View File

@ -17,7 +17,7 @@ log = [
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../embassy-sync" }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "rtos-trace", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "rtos-trace", "rtos-trace-interrupt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time" }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac"] }

View File

@ -1,17 +1,5 @@
MEMORY {
BOOT2 : ORIGIN = 0x10000000, LENGTH = 0x100
FLASH : ORIGIN = 0x10000100, LENGTH = 2048K - 0x100
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
}
RAM : ORIGIN = 0x20000000, LENGTH = 256K
}

View File

@ -39,7 +39,7 @@ async fn main(_spawner: Spawner) -> ! {
let mut vrefint = adc.enable_vref(&mut Delay);
let mut temperature = adc.enable_temperature();
let mut buffer = opamp.buffer_ext(&mut p.PA7, &mut p.PA6, OpAmpGain::Mul1);
let mut buffer = opamp.buffer_ext(&p.PA7, &mut p.PA6, OpAmpGain::Mul1);
loop {
let vref = adc.read(&mut vrefint).await;

View File

@ -14,7 +14,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -19,7 +19,8 @@ const HEIGHT: usize = 100;
static mut FRAME: [u32; WIDTH * HEIGHT / 2] = [0u32; WIDTH * HEIGHT / 2];
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::InterruptHandler<peripherals::I2C1>;
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
DCMI => dcmi::InterruptHandler<peripherals::DCMI>;
});

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -14,7 +14,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -16,7 +16,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -40,7 +40,8 @@ use static_cell::make_static;
use {embassy_stm32 as hal, panic_probe as _};
bind_interrupts!(struct Irqs {
I2C3_EV => i2c::InterruptHandler<peripherals::I2C3>;
I2C3_EV => i2c::EventInterruptHandler<peripherals::I2C3>;
I2C3_ER => i2c::ErrorInterruptHandler<peripherals::I2C3>;
RNG => rng::InterruptHandler<peripherals::RNG>;
});

View File

@ -2,7 +2,7 @@
# https://rust-lang.github.io/rustup-components-history
[toolchain]
channel = "nightly-2023-11-01"
components = [ "rust-src", "rustfmt", "llvm-tools", "miri" ]
components = [ "rust-src", "rustfmt", "llvm-tools" ]
targets = [
"thumbv7em-none-eabi",
"thumbv7m-none-eabi",