embassy/embassy-stm32/src/usart/ringbuffered.rs
xoviat aba0f8fd6c stm32/uart: refactor rx ringbuffer
- remove some race conditions
- allow full use of rx buffer
2023-05-29 14:49:43 -05:00

257 lines
7.5 KiB
Rust

use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_hal_common::PeripheralRef;
use futures::future::{select, Either};
use super::{clear_interrupt_flags, rdr, sr, BasicInstance, Error, UartRx};
use crate::dma::RingBuffer;
use crate::usart::{Regs, Sr};
pub struct RingBufferedUartRx<'d, T: BasicInstance, RxDma: super::RxDma<T>> {
_peri: PeripheralRef<'d, T>,
ring_buf: RingBuffer<'d, RxDma, u8>,
}
impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> UartRx<'d, T, RxDma> {
/// Turn the `UartRx` into a buffered uart which can continously receive in the background
/// without the possibility of loosing bytes. The `dma_buf` is a buffer registered to the
/// DMA controller, and must be sufficiently large, such that it will not overflow.
pub fn into_ring_buffered(self, dma_buf: &'d mut [u8]) -> RingBufferedUartRx<'d, T, RxDma> {
assert!(dma_buf.len() > 0 && dma_buf.len() <= 0xFFFF);
let request = self.rx_dma.request();
let opts = Default::default();
let ring_buf = unsafe { RingBuffer::new_read(self.rx_dma, request, rdr(T::regs()), dma_buf, opts) };
RingBufferedUartRx {
_peri: self._peri,
ring_buf,
}
}
}
impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> RingBufferedUartRx<'d, T, RxDma> {
pub fn start(&mut self) -> Result<(), Error> {
// Clear the ring buffer so that it is ready to receive data
self.ring_buf.clear();
self.setup_uart();
Ok(())
}
fn stop(&mut self, err: Error) -> Result<usize, Error> {
self.teardown_uart();
Err(err)
}
/// Start uart background receive
fn setup_uart(&mut self) {
// fence before starting DMA.
compiler_fence(Ordering::SeqCst);
// start the dma controller
self.ring_buf.start();
let r = T::regs();
// clear all interrupts and DMA Rx Request
// SAFETY: only clears Rx related flags
unsafe {
r.cr1().modify(|w| {
// disable RXNE interrupt
w.set_rxneie(false);
// enable parity interrupt if not ParityNone
w.set_peie(w.pce());
// enable idle line interrupt
w.set_idleie(true);
});
r.cr3().modify(|w| {
// enable Error Interrupt: (Frame error, Noise error, Overrun error)
w.set_eie(true);
// enable DMA Rx Request
w.set_dmar(true);
});
}
}
/// Stop uart background receive
fn teardown_uart(&mut self) {
self.ring_buf.request_stop();
let r = T::regs();
// clear all interrupts and DMA Rx Request
// SAFETY: only clears Rx related flags
unsafe {
r.cr1().modify(|w| {
// disable RXNE interrupt
w.set_rxneie(false);
// disable parity interrupt
w.set_peie(false);
// disable idle line interrupt
w.set_idleie(false);
});
r.cr3().modify(|w| {
// disable Error Interrupt: (Frame error, Noise error, Overrun error)
w.set_eie(false);
// disable DMA Rx Request
w.set_dmar(false);
});
}
compiler_fence(Ordering::SeqCst);
}
/// Read bytes that are readily available in the ring buffer.
/// If no bytes are currently available in the buffer the call waits until the some
/// bytes are available (at least one byte and at most half the buffer size)
///
/// Background receive is started if `start()` has not been previously called.
///
/// Receive in the background is terminated if an error is returned.
/// It must then manually be started again by calling `start()` or by re-calling `read()`.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
let r = T::regs();
// Start background receive if it was not already started
// SAFETY: read only
match unsafe { r.cr3().read().dmar() } {
false => self.start()?,
_ => {}
};
check_for_errors(clear_idle_flag(T::regs()))?;
loop {
match self.ring_buf.read(buf) {
Ok((0, _)) => {}
Ok((len, _)) => {
return Ok(len);
}
Err(_) => {
return self.stop(Error::Overrun);
}
}
match self.wait_for_data_or_idle().await {
Ok(_) => {}
Err(err) => {
return self.stop(err);
}
}
}
}
/// Wait for uart idle or dma half-full or full
async fn wait_for_data_or_idle(&mut self) -> Result<(), Error> {
compiler_fence(Ordering::SeqCst);
let mut dma_init = false;
// Future which completes when there is dma is half full or full
let dma = poll_fn(|cx| {
self.ring_buf.set_waker(cx.waker());
let status = match dma_init {
false => Poll::Pending,
true => Poll::Ready(()),
};
dma_init = true;
status
});
// Future which completes when idle line is detected
let uart = poll_fn(|cx| {
let s = T::state();
s.rx_waker.register(cx.waker());
compiler_fence(Ordering::SeqCst);
// Critical section is needed so that IDLE isn't set after
// our read but before we clear it.
let sr = critical_section::with(|_| clear_idle_flag(T::regs()));
check_for_errors(sr)?;
if sr.idle() {
// Idle line is detected
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
});
match select(dma, uart).await {
Either::Left(((), _)) => Ok(()),
Either::Right((result, _)) => result,
}
}
}
impl<T: BasicInstance, RxDma: super::RxDma<T>> Drop for RingBufferedUartRx<'_, T, RxDma> {
fn drop(&mut self) {
self.teardown_uart();
}
}
/// Return an error result if the Sr register has errors
fn check_for_errors(s: Sr) -> Result<(), Error> {
if s.pe() {
Err(Error::Parity)
} else if s.fe() {
Err(Error::Framing)
} else if s.ne() {
Err(Error::Noise)
} else if s.ore() {
Err(Error::Overrun)
} else {
Ok(())
}
}
/// Clear IDLE and return the Sr register
fn clear_idle_flag(r: Regs) -> Sr {
unsafe {
// SAFETY: read only and we only use Rx related flags
let sr = sr(r).read();
// This read also clears the error and idle interrupt flags on v1.
rdr(r).read_volatile();
clear_interrupt_flags(r, sr);
r.cr1().modify(|w| w.set_idleie(true));
sr
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eio {
use embedded_io::asynch::Read;
use embedded_io::Io;
use super::RingBufferedUartRx;
use crate::usart::{BasicInstance, Error, RxDma};
impl<T, Rx> Io for RingBufferedUartRx<'_, T, Rx>
where
T: BasicInstance,
Rx: RxDma<T>,
{
type Error = Error;
}
impl<T, Rx> Read for RingBufferedUartRx<'_, T, Rx>
where
T: BasicInstance,
Rx: RxDma<T>,
{
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.read(buf).await
}
}
}