fdd6e08ed6
rp-hal has done this very well already, so we'll just copy their entire impl again. only div.rs needed some massaging because our sio access works a little differently, everything else worked as is.
142 lines
4.7 KiB
Rust
142 lines
4.7 KiB
Rust
// Credit: taken from `rp-hal` (also licensed Apache+MIT)
|
|
// https://github.com/rp-rs/rp-hal/blob/main/rp2040-hal/src/float/conv.rs
|
|
|
|
use super::Float;
|
|
use crate::rom_data;
|
|
|
|
// Make sure this stays as a separate call, because when it's inlined the
|
|
// compiler will move the save of the registers used to contain the divider
|
|
// state into the function prologue. That save and restore (push/pop) takes
|
|
// longer than the actual division, so doing it in the common case where
|
|
// they are not required wastes a lot of time.
|
|
#[inline(never)]
|
|
#[cold]
|
|
fn save_divider_and_call<F, R>(f: F) -> R
|
|
where
|
|
F: FnOnce() -> R,
|
|
{
|
|
let sio = rp_pac::SIO;
|
|
|
|
unsafe {
|
|
// Since we can't save the signed-ness of the calculation, we have to make
|
|
// sure that there's at least an 8 cycle delay before we read the result.
|
|
// The Pico SDK ensures this by using a 6 cycle push and two 1 cycle reads.
|
|
// Since we can't be sure the Rust implementation will optimize to the same,
|
|
// just use an explicit wait.
|
|
while !sio.div().csr().read().ready() {}
|
|
|
|
// Read the quotient last, since that's what clears the dirty flag
|
|
let dividend = sio.div().udividend().read();
|
|
let divisor = sio.div().udivisor().read();
|
|
let remainder = sio.div().remainder().read();
|
|
let quotient = sio.div().quotient().read();
|
|
|
|
// If we get interrupted here (before a write sets the DIRTY flag) its fine, since
|
|
// we have the full state, so the interruptor doesn't have to restore it. Once the
|
|
// write happens and the DIRTY flag is set, the interruptor becomes responsible for
|
|
// restoring our state.
|
|
let result = f();
|
|
|
|
// If we are interrupted here, then the interruptor will start an incorrect calculation
|
|
// using a wrong divisor, but we'll restore the divisor and result ourselves correctly.
|
|
// This sets DIRTY, so any interruptor will save the state.
|
|
sio.div().udividend().write_value(dividend);
|
|
// If we are interrupted here, the the interruptor may start the calculation using
|
|
// incorrectly signed inputs, but we'll restore the result ourselves.
|
|
// This sets DIRTY, so any interruptor will save the state.
|
|
sio.div().udivisor().write_value(divisor);
|
|
// If we are interrupted here, the interruptor will have restored everything but the
|
|
// quotient may be wrongly signed. If the calculation started by the above writes is
|
|
// still ongoing it is stopped, so it won't replace the result we're restoring.
|
|
// DIRTY and READY set, but only DIRTY matters to make the interruptor save the state.
|
|
sio.div().remainder().write_value(remainder);
|
|
// State fully restored after the quotient write. This sets both DIRTY and READY, so
|
|
// whatever we may have interrupted can read the result.
|
|
sio.div().quotient().write_value(quotient);
|
|
|
|
result
|
|
}
|
|
}
|
|
|
|
fn save_divider<F, R>(f: F) -> R
|
|
where
|
|
F: FnOnce() -> R,
|
|
{
|
|
let sio = rp_pac::SIO;
|
|
if unsafe { !sio.div().csr().read().dirty() } {
|
|
// Not dirty, so nothing is waiting for the calculation. So we can just
|
|
// issue it directly without a save/restore.
|
|
f()
|
|
} else {
|
|
save_divider_and_call(f)
|
|
}
|
|
}
|
|
|
|
trait ROMDiv {
|
|
fn rom_div(self, b: Self) -> Self;
|
|
}
|
|
|
|
impl ROMDiv for f32 {
|
|
fn rom_div(self, b: Self) -> Self {
|
|
// ROM implementation uses the hardware divider, so we have to save it
|
|
save_divider(|| rom_data::float_funcs::fdiv(self, b))
|
|
}
|
|
}
|
|
|
|
impl ROMDiv for f64 {
|
|
fn rom_div(self, b: Self) -> Self {
|
|
// ROM implementation uses the hardware divider, so we have to save it
|
|
save_divider(|| rom_data::double_funcs::ddiv(self, b))
|
|
}
|
|
}
|
|
|
|
fn div<F: Float + ROMDiv>(a: F, b: F) -> F {
|
|
if a.is_not_finite() {
|
|
if b.is_not_finite() {
|
|
// inf/NaN / inf/NaN = NaN
|
|
return F::NAN;
|
|
}
|
|
|
|
if b.is_zero() {
|
|
// inf/NaN / 0 = NaN
|
|
return F::NAN;
|
|
}
|
|
|
|
return if b.is_sign_negative() {
|
|
// [+/-]inf/NaN / (-X) = [-/+]inf/NaN
|
|
a.negate()
|
|
} else {
|
|
// [-]inf/NaN / X = [-]inf/NaN
|
|
a
|
|
};
|
|
}
|
|
|
|
if b.is_nan() {
|
|
// X / NaN = NaN
|
|
return b;
|
|
}
|
|
|
|
// ROM handles X / 0 = [-]inf and X / [-]inf = [-]0, so we only
|
|
// need to catch 0 / 0
|
|
if b.is_zero() && a.is_zero() {
|
|
return F::NAN;
|
|
}
|
|
|
|
a.rom_div(b)
|
|
}
|
|
|
|
intrinsics! {
|
|
#[alias = __divsf3vfp]
|
|
#[aeabi = __aeabi_fdiv]
|
|
extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
|
|
div(a, b)
|
|
}
|
|
|
|
#[bootrom_v2]
|
|
#[alias = __divdf3vfp]
|
|
#[aeabi = __aeabi_ddiv]
|
|
extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
|
|
div(a, b)
|
|
}
|
|
}
|