a34331ae5f
* Allow manipulating state without accessing DFU partition. * Provide aligned buffer when creating updater to reduce potential wrong parameters passed.
312 lines
11 KiB
Rust
312 lines
11 KiB
Rust
use digest::Digest;
|
|
#[cfg(target_os = "none")]
|
|
use embassy_embedded_hal::flash::partition::Partition;
|
|
#[cfg(target_os = "none")]
|
|
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
|
|
use embedded_storage_async::nor_flash::NorFlash;
|
|
|
|
use super::FirmwareUpdaterConfig;
|
|
use crate::{FirmwareUpdaterError, State, BOOT_MAGIC, STATE_ERASE_VALUE, SWAP_MAGIC};
|
|
|
|
/// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
|
|
/// 'mess up' the internal bootloader state
|
|
pub struct FirmwareUpdater<'d, DFU: NorFlash, STATE: NorFlash> {
|
|
dfu: DFU,
|
|
state: FirmwareState<'d, STATE>,
|
|
}
|
|
|
|
#[cfg(target_os = "none")]
|
|
impl<'a, FLASH: NorFlash>
|
|
FirmwareUpdaterConfig<Partition<'a, NoopRawMutex, FLASH>, Partition<'a, NoopRawMutex, FLASH>>
|
|
{
|
|
/// Create a firmware updater config from the flash and address symbols defined in the linkerfile
|
|
pub fn from_linkerfile(flash: &'a embassy_sync::mutex::Mutex<NoopRawMutex, FLASH>) -> Self {
|
|
extern "C" {
|
|
static __bootloader_state_start: u32;
|
|
static __bootloader_state_end: u32;
|
|
static __bootloader_dfu_start: u32;
|
|
static __bootloader_dfu_end: u32;
|
|
}
|
|
|
|
let dfu = unsafe {
|
|
let start = &__bootloader_dfu_start as *const u32 as u32;
|
|
let end = &__bootloader_dfu_end as *const u32 as u32;
|
|
trace!("DFU: 0x{:x} - 0x{:x}", start, end);
|
|
|
|
Partition::new(flash, start, end - start)
|
|
};
|
|
let state = unsafe {
|
|
let start = &__bootloader_state_start as *const u32 as u32;
|
|
let end = &__bootloader_state_end as *const u32 as u32;
|
|
trace!("STATE: 0x{:x} - 0x{:x}", start, end);
|
|
|
|
Partition::new(flash, start, end - start)
|
|
};
|
|
|
|
Self { dfu, state }
|
|
}
|
|
}
|
|
|
|
impl<'d, DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<'d, DFU, STATE> {
|
|
/// Create a firmware updater instance with partition ranges for the update and state partitions.
|
|
pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
|
|
Self {
|
|
dfu: config.dfu,
|
|
state: FirmwareState::new(config.state, aligned),
|
|
}
|
|
}
|
|
|
|
/// Obtain the current state.
|
|
///
|
|
/// This is useful to check if the bootloader has just done a swap, in order
|
|
/// to do verifications and self-tests of the new image before calling
|
|
/// `mark_booted`.
|
|
pub async fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
|
|
self.state.get_state().await
|
|
}
|
|
|
|
/// Verify the DFU given a public key. If there is an error then DO NOT
|
|
/// proceed with updating the firmware as it must be signed with a
|
|
/// corresponding private key (otherwise it could be malicious firmware).
|
|
///
|
|
/// Mark to trigger firmware swap on next boot if verify suceeds.
|
|
///
|
|
/// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have
|
|
/// been generated from a SHA-512 digest of the firmware bytes.
|
|
///
|
|
/// If no signature feature is set then this method will always return a
|
|
/// signature error.
|
|
#[cfg(feature = "_verify")]
|
|
pub async fn verify_and_mark_updated(
|
|
&mut self,
|
|
_public_key: &[u8],
|
|
_signature: &[u8],
|
|
_update_len: u32,
|
|
) -> Result<(), FirmwareUpdaterError> {
|
|
assert!(_update_len <= self.dfu.capacity() as u32);
|
|
|
|
self.state.verify_booted().await?;
|
|
|
|
#[cfg(feature = "ed25519-dalek")]
|
|
{
|
|
use ed25519_dalek::{PublicKey, Signature, SignatureError, Verifier};
|
|
|
|
use crate::digest_adapters::ed25519_dalek::Sha512;
|
|
|
|
let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into());
|
|
|
|
let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?;
|
|
let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?;
|
|
|
|
let mut chunk_buf = [0; 2];
|
|
let mut message = [0; 64];
|
|
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message).await?;
|
|
|
|
public_key.verify(&message, &signature).map_err(into_signature_error)?
|
|
}
|
|
#[cfg(feature = "ed25519-salty")]
|
|
{
|
|
use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH};
|
|
use salty::{PublicKey, Signature};
|
|
|
|
use crate::digest_adapters::salty::Sha512;
|
|
|
|
fn into_signature_error<E>(_: E) -> FirmwareUpdaterError {
|
|
FirmwareUpdaterError::Signature(signature::Error::default())
|
|
}
|
|
|
|
let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?;
|
|
let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?;
|
|
let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?;
|
|
let signature = Signature::try_from(&signature).map_err(into_signature_error)?;
|
|
|
|
let mut message = [0; 64];
|
|
let mut chunk_buf = [0; 2];
|
|
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message).await?;
|
|
|
|
let r = public_key.verify(&message, &signature);
|
|
trace!(
|
|
"Verifying with public key {}, signature {} and message {} yields ok: {}",
|
|
public_key.to_bytes(),
|
|
signature.to_bytes(),
|
|
message,
|
|
r.is_ok()
|
|
);
|
|
r.map_err(into_signature_error)?
|
|
}
|
|
|
|
self.state.mark_updated().await
|
|
}
|
|
|
|
/// Verify the update in DFU with any digest.
|
|
pub async fn hash<D: Digest>(
|
|
&mut self,
|
|
update_len: u32,
|
|
chunk_buf: &mut [u8],
|
|
output: &mut [u8],
|
|
) -> Result<(), FirmwareUpdaterError> {
|
|
let mut digest = D::new();
|
|
for offset in (0..update_len).step_by(chunk_buf.len()) {
|
|
self.dfu.read(offset, chunk_buf).await?;
|
|
let len = core::cmp::min((update_len - offset) as usize, chunk_buf.len());
|
|
digest.update(&chunk_buf[..len]);
|
|
}
|
|
output.copy_from_slice(digest.finalize().as_slice());
|
|
Ok(())
|
|
}
|
|
|
|
/// Mark to trigger firmware swap on next boot.
|
|
#[cfg(not(feature = "_verify"))]
|
|
pub async fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.mark_updated().await
|
|
}
|
|
|
|
/// Mark firmware boot successful and stop rollback on reset.
|
|
pub async fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.mark_booted().await
|
|
}
|
|
|
|
/// Write data to a flash page.
|
|
///
|
|
/// The buffer must follow alignment requirements of the target flash and a multiple of page size big.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Failing to meet alignment and size requirements may result in a panic.
|
|
pub async fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), FirmwareUpdaterError> {
|
|
assert!(data.len() >= DFU::ERASE_SIZE);
|
|
|
|
self.state.verify_booted().await?;
|
|
|
|
self.dfu.erase(offset as u32, (offset + data.len()) as u32).await?;
|
|
|
|
self.dfu.write(offset as u32, data).await?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Prepare for an incoming DFU update by erasing the entire DFU area and
|
|
/// returning its `Partition`.
|
|
///
|
|
/// Using this instead of `write_firmware` allows for an optimized API in
|
|
/// exchange for added complexity.
|
|
pub async fn prepare_update(&mut self) -> Result<&mut DFU, FirmwareUpdaterError> {
|
|
self.state.verify_booted().await?;
|
|
self.dfu.erase(0, self.dfu.capacity() as u32).await?;
|
|
|
|
Ok(&mut self.dfu)
|
|
}
|
|
}
|
|
|
|
/// Manages the state partition of the firmware update.
|
|
///
|
|
/// Can be used standalone for more fine grained control, or as part of the updater.
|
|
pub struct FirmwareState<'d, STATE> {
|
|
state: STATE,
|
|
aligned: &'d mut [u8],
|
|
}
|
|
|
|
impl<'d, STATE: NorFlash> FirmwareState<'d, STATE> {
|
|
/// Create a firmware state instance with a buffer for magic content and state partition.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
|
|
/// and written to.
|
|
pub fn new(state: STATE, aligned: &'d mut [u8]) -> Self {
|
|
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
|
|
Self { state, aligned }
|
|
}
|
|
|
|
// Make sure we are running a booted firmware to avoid reverting to a bad state.
|
|
async fn verify_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
if self.get_state().await? == State::Boot {
|
|
Ok(())
|
|
} else {
|
|
Err(FirmwareUpdaterError::BadState)
|
|
}
|
|
}
|
|
|
|
/// Obtain the current state.
|
|
///
|
|
/// This is useful to check if the bootloader has just done a swap, in order
|
|
/// to do verifications and self-tests of the new image before calling
|
|
/// `mark_booted`.
|
|
pub async fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
|
|
self.state.read(0, &mut self.aligned).await?;
|
|
|
|
if !self.aligned.iter().any(|&b| b != SWAP_MAGIC) {
|
|
Ok(State::Swap)
|
|
} else {
|
|
Ok(State::Boot)
|
|
}
|
|
}
|
|
|
|
/// Mark to trigger firmware swap on next boot.
|
|
pub async fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.set_magic(SWAP_MAGIC).await
|
|
}
|
|
|
|
/// Mark firmware boot successful and stop rollback on reset.
|
|
pub async fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
|
|
self.set_magic(BOOT_MAGIC).await
|
|
}
|
|
|
|
async fn set_magic(&mut self, magic: u8) -> Result<(), FirmwareUpdaterError> {
|
|
self.state.read(0, &mut self.aligned).await?;
|
|
|
|
if self.aligned.iter().any(|&b| b != magic) {
|
|
// Read progress validity
|
|
self.state.read(STATE::WRITE_SIZE as u32, &mut self.aligned).await?;
|
|
|
|
if self.aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
|
|
// The current progress validity marker is invalid
|
|
} else {
|
|
// Invalidate progress
|
|
self.aligned.fill(!STATE_ERASE_VALUE);
|
|
self.state.write(STATE::WRITE_SIZE as u32, &self.aligned).await?;
|
|
}
|
|
|
|
// Clear magic and progress
|
|
self.state.erase(0, self.state.capacity() as u32).await?;
|
|
|
|
// Set magic
|
|
self.aligned.fill(magic);
|
|
self.state.write(0, &self.aligned).await?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use embassy_embedded_hal::flash::partition::Partition;
|
|
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
|
|
use embassy_sync::mutex::Mutex;
|
|
use futures::executor::block_on;
|
|
use sha1::{Digest, Sha1};
|
|
|
|
use super::*;
|
|
use crate::mem_flash::MemFlash;
|
|
|
|
#[test]
|
|
fn can_verify_sha1() {
|
|
let flash = Mutex::<NoopRawMutex, _>::new(MemFlash::<131072, 4096, 8>::default());
|
|
let state = Partition::new(&flash, 0, 4096);
|
|
let dfu = Partition::new(&flash, 65536, 65536);
|
|
let mut aligned = [0; 8];
|
|
|
|
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
|
|
let mut to_write = [0; 4096];
|
|
to_write[..7].copy_from_slice(update.as_slice());
|
|
|
|
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
|
|
block_on(updater.write_firmware(0, to_write.as_slice())).unwrap();
|
|
let mut chunk_buf = [0; 2];
|
|
let mut hash = [0; 20];
|
|
block_on(updater.hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)).unwrap();
|
|
|
|
assert_eq!(Sha1::digest(update).as_slice(), hash);
|
|
}
|
|
}
|