Fix Bézier interpolation.

This commit is contained in:
Dimitri Sabadie 2019-10-20 20:52:15 +02:00
parent 425433cd5b
commit 22e75c6901
No known key found for this signature in database
GPG Key ID: 5F8C1C97C1D2BB61
4 changed files with 29 additions and 21 deletions

View File

@ -1,3 +1,16 @@
# 3.0.0
> Sun Oct 20th 2019
## Major changes
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
to ease some interpolation mode (especially Bézier).
## Patch changes
- Fix Bézier interpolation when the next key is Bézier too.
# 2.2.0 # 2.2.0
> Mon Oct 17th 2019 > Mon Oct 17th 2019

View File

@ -1,6 +1,6 @@
[package] [package]
name = "splines" name = "splines"
version = "2.2.0" version = "3.0.0"
license = "BSD-3-Clause" license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"] authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy" description = "Spline interpolation made easy"

View File

@ -45,7 +45,7 @@
/// instance to know which trait your type must implement to be usable. /// instance to know which trait your type must implement to be usable.
/// ///
/// [`Spline::sample`]: crate::spline::Spline::sample /// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy { pub trait Interpolate<T>: Sized + Copy + Linear<T> {
/// Linear interpolation. /// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self; fn lerp(a: Self, b: Self, t: T) -> Self;
@ -240,10 +240,7 @@ where V: Linear<T>,
let one_t_3 = one_t_2 * one_t; let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one(); let three = T::one() + T::one() + T::one();
// mirror the “output” tangent based on the next key “input” tangent a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
let v_ = b + b - v;
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
} }
macro_rules! impl_interpolate_simple { macro_rules! impl_interpolate_simple {

View File

@ -7,7 +7,7 @@
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul}; #[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::cmp::Ordering; #[cfg(not(feature = "std"))] use core::cmp::Ordering;
use crate::interpolate::{Interpolate, Additive, One, Trigo}; use crate::interpolate::{Additive, Interpolate, One, Trigo};
use crate::interpolation::Interpolation; use crate::interpolation::Interpolation;
use crate::key::Key; use crate::key::Key;
@ -86,7 +86,7 @@ impl<T, V> Spline<T, V> {
/// the sampling. /// the sampling.
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)> pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd, where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> { V: Additive + Interpolate<T> {
let keys = &self.0; let keys = &self.0;
let i = search_lower_cp(keys, t)?; let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i]; let cp0 = &keys[i];
@ -134,29 +134,27 @@ impl<T, V> Spline<T, V> {
} }
} }
Interpolation::Bezier(u) => { Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier. // We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1]; let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1); let nt = normalize_time(t, cp0, cp1);
let value = let value =
if let Interpolation::Bezier(v) = cp1.interpolation { match cp1.interpolation {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt) Interpolation::Bezier(v) => {
} else { Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt) }
Interpolation::StrokeBezier(v, _) => {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
}
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
}; };
Some((value, cp0, Some(cp1))) Some((value, cp0, Some(cp1)))
} }
Interpolation::StrokeBezier(input, output) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_bezier(cp0.value, input, output, cp1.value, nt);
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(), Interpolation::__NonExhaustive => unreachable!(),
} }
} }