Fix Bézier interpolation.
This commit is contained in:
parent
425433cd5b
commit
22e75c6901
13
CHANGELOG.md
13
CHANGELOG.md
@ -1,3 +1,16 @@
|
|||||||
|
# 3.0.0
|
||||||
|
|
||||||
|
> Sun Oct 20th 2019
|
||||||
|
|
||||||
|
## Major changes
|
||||||
|
|
||||||
|
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
|
||||||
|
to ease some interpolation mode (especially Bézier).
|
||||||
|
|
||||||
|
## Patch changes
|
||||||
|
|
||||||
|
- Fix Bézier interpolation when the next key is Bézier too.
|
||||||
|
|
||||||
# 2.2.0
|
# 2.2.0
|
||||||
|
|
||||||
> Mon Oct 17th 2019
|
> Mon Oct 17th 2019
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "splines"
|
name = "splines"
|
||||||
version = "2.2.0"
|
version = "3.0.0"
|
||||||
license = "BSD-3-Clause"
|
license = "BSD-3-Clause"
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
description = "Spline interpolation made easy"
|
description = "Spline interpolation made easy"
|
||||||
|
@ -45,7 +45,7 @@
|
|||||||
/// instance to know which trait your type must implement to be usable.
|
/// instance to know which trait your type must implement to be usable.
|
||||||
///
|
///
|
||||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
/// [`Spline::sample`]: crate::spline::Spline::sample
|
||||||
pub trait Interpolate<T>: Sized + Copy {
|
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
|
||||||
/// Linear interpolation.
|
/// Linear interpolation.
|
||||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||||
|
|
||||||
@ -240,10 +240,7 @@ where V: Linear<T>,
|
|||||||
let one_t_3 = one_t_2 * one_t;
|
let one_t_3 = one_t_2 * one_t;
|
||||||
let three = T::one() + T::one() + T::one();
|
let three = T::one() + T::one() + T::one();
|
||||||
|
|
||||||
// mirror the “output” tangent based on the next key “input” tangent
|
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||||
let v_ = b + b - v;
|
|
||||||
|
|
||||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
macro_rules! impl_interpolate_simple {
|
macro_rules! impl_interpolate_simple {
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||||
|
|
||||||
use crate::interpolate::{Interpolate, Additive, One, Trigo};
|
use crate::interpolate::{Additive, Interpolate, One, Trigo};
|
||||||
use crate::interpolation::Interpolation;
|
use crate::interpolation::Interpolation;
|
||||||
use crate::key::Key;
|
use crate::key::Key;
|
||||||
|
|
||||||
@ -86,7 +86,7 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// the sampling.
|
/// the sampling.
|
||||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Additive + Interpolate<T> {
|
||||||
let keys = &self.0;
|
let keys = &self.0;
|
||||||
let i = search_lower_cp(keys, t)?;
|
let i = search_lower_cp(keys, t)?;
|
||||||
let cp0 = &keys[i];
|
let cp0 = &keys[i];
|
||||||
@ -134,29 +134,27 @@ impl<T, V> Spline<T, V> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Bezier(u) => {
|
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
let value =
|
let value =
|
||||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
match cp1.interpolation {
|
||||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
Interpolation::Bezier(v) => {
|
||||||
} else {
|
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
|
||||||
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
}
|
||||||
|
|
||||||
|
Interpolation::StrokeBezier(v, _) => {
|
||||||
|
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||||
|
}
|
||||||
|
|
||||||
|
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||||
};
|
};
|
||||||
|
|
||||||
Some((value, cp0, Some(cp1)))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::StrokeBezier(input, output) => {
|
|
||||||
let cp1 = &keys[i + 1];
|
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
|
||||||
let value = Interpolate::cubic_bezier(cp0.value, input, output, cp1.value, nt);
|
|
||||||
|
|
||||||
Some((value, cp0, Some(cp1)))
|
|
||||||
}
|
|
||||||
|
|
||||||
Interpolation::__NonExhaustive => unreachable!(),
|
Interpolation::__NonExhaustive => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user