Refactor polymorphic sampling code.
This commit is contained in:
		
							
								
								
									
										27
									
								
								Cargo.toml
									
									
									
									
									
								
							
							
						
						
									
										27
									
								
								Cargo.toml
									
									
									
									
									
								
							| @@ -20,28 +20,13 @@ is-it-maintained-open-issues = { repository = "phaazon/splines" } | ||||
| maintenance = { status = "actively-developed" } | ||||
|  | ||||
| [features] | ||||
| default = ["std", "impl-cgmath"] | ||||
| default = ["std"] | ||||
| serialization = ["serde", "serde_derive"] | ||||
| std = ["num-traits/std"] | ||||
| impl-cgmath = ["cgmath"] | ||||
| impl-nalgebra = ["nalgebra"] | ||||
|  | ||||
| [dependencies.nalgebra] | ||||
| version = ">=0.14, <0.17" | ||||
| optional = true | ||||
|  | ||||
| [dependencies.cgmath] | ||||
| version = "0.16" | ||||
| optional = true | ||||
|  | ||||
| [dependencies.num-traits] | ||||
| num-traits = "0.2" | ||||
| default-features = false | ||||
|  | ||||
| [dependencies.serde] | ||||
| version = "1" | ||||
| optional = true | ||||
|  | ||||
| [dependencies.serde_derive] | ||||
| version = "1" | ||||
| optional = true | ||||
| [dependencies] | ||||
| nalgebra = { version = ">=0.14, <0.19", optional = true } | ||||
| num-traits = { version = "0.2", default-features = false } | ||||
| serde =  { version = "1", optional = true } | ||||
| serde_derive = { version = "1", optional = true } | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| #[macro_use] extern crate serde_json; | ||||
| extern crate splines; | ||||
|  | ||||
| use serde_json::{Value, from_value}; | ||||
| use serde_json::from_value; | ||||
| use splines::Spline; | ||||
|  | ||||
| fn main() { | ||||
| @@ -25,6 +25,6 @@ fn main() { | ||||
|     ] | ||||
|   }; | ||||
|  | ||||
|   let spline = from_value::<Spline<f32>>(value); | ||||
|   let spline = from_value::<Spline<f32, f32>>(value); | ||||
|   println!("{:?}", spline); | ||||
| } | ||||
|   | ||||
							
								
								
									
										230
									
								
								src/lib.rs
									
									
									
									
									
								
							
							
						
						
									
										230
									
								
								src/lib.rs
									
									
									
									
									
								
							| @@ -81,9 +81,6 @@ | ||||
| //!     + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all | ||||
| //!       types exported by this crate. | ||||
| //!     + Enable with the `"serialization"` feature. | ||||
| //!   - **[cgmath](https://crates.io/crates/cgmath) implementors.** | ||||
| //!     + Adds some useful implementations of `Interpolate` for some cgmath types. | ||||
| //!     + Enable with the `"impl-cgmath"` feature. | ||||
| //!   - **[nalgebra](https://crates.io/crates/nalgebra) implementors.** | ||||
| //!     + Adds some useful implementations of `Interpolate` for some nalgebra types. | ||||
| //!     + Enable with the `"impl-nalgebra"` feature. | ||||
| @@ -97,27 +94,12 @@ | ||||
| #![cfg_attr(not(feature = "std"), feature(alloc))] | ||||
| #![cfg_attr(not(feature = "std"), feature(core_intrinsics))] | ||||
|  | ||||
| // on no_std, we also need the alloc crate for Vec | ||||
| #[cfg(not(feature = "std"))] extern crate alloc; | ||||
|  | ||||
| #[cfg(feature = "impl-cgmath")] extern crate cgmath; | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] extern crate nalgebra; | ||||
|  | ||||
| #[cfg(feature = "serialization")] extern crate serde; | ||||
| #[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive; | ||||
|  | ||||
| #[cfg(feature = "impl-cgmath")] | ||||
| use cgmath::{ | ||||
|   BaseFloat, InnerSpace, Quaternion, Vector2, Vector3, Vector4 | ||||
| }; | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] use nalgebra as na; | ||||
| #[cfg(feature = "impl-nalgebra")] use nalgebra::core::{DimName, DefaultAllocator, Scalar}; | ||||
| #[cfg(feature = "impl-nalgebra")] use nalgebra::core::allocator::Allocator; | ||||
|  | ||||
| #[cfg(feature = "std")] use std::cmp::Ordering; | ||||
| #[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub}; | ||||
| #[cfg(feature = "std")] use std::ops::{Div, Mul}; | ||||
|  | ||||
| #[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize}; | ||||
|  | ||||
| #[cfg(not(feature = "std"))] use alloc::vec::Vec; | ||||
| #[cfg(not(feature = "std"))] use core::cmp::Ordering; | ||||
| @@ -217,11 +199,11 @@ impl<T, V> Spline<T, V> { | ||||
|   /// # Return | ||||
|   /// | ||||
|   /// `None` if you try to sample a value at a time that has no key associated with. That can also | ||||
|   /// happen if you try to sample between two keys with a specific interpolation mode that make the | ||||
|   /// happen if you try to sample between two keys with a specific interpolation mode that makes the | ||||
|   /// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re | ||||
|   /// near the beginning of the spline or its end, ensure you have enough keys around to make the | ||||
|   /// sampling. | ||||
|   pub fn sample(&self, t: T) -> Option<V> where V: Interpolate<T>, T: Float { | ||||
|   pub fn sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> { | ||||
|     let keys = &self.0; | ||||
|     let i = search_lower_cp(keys, t)?; | ||||
|     let cp0 = &keys[i]; | ||||
| @@ -241,9 +223,10 @@ impl<T, V> Spline<T, V> { | ||||
|       } | ||||
|  | ||||
|       Interpolation::Cosine => { | ||||
|         let two_t = T::one() + T::one(); | ||||
|         let cp1 = &keys[i+1]; | ||||
|         let nt = normalize_time(t, cp0, cp1); | ||||
|         let cos_nt = (1. - (nt * T::PI).cos()) * 0.5; | ||||
|         let cos_nt = (T::one() - (nt * T::PI()).cos()) / two_t; | ||||
|  | ||||
|         Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt)) | ||||
|       } | ||||
| @@ -275,23 +258,25 @@ impl<T, V> Spline<T, V> { | ||||
|   /// # Error | ||||
|   /// | ||||
|   /// This function returns `None` if you have no key. | ||||
|   pub fn clamped_sample(&self, t: f32) -> Option<T> where T: Interpolate { | ||||
|   pub fn clamped_sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> { | ||||
|     if self.0.is_empty() { | ||||
|       return None; | ||||
|     } | ||||
|  | ||||
|     let first = self.0.first().unwrap(); | ||||
|     let last = self.0.last().unwrap(); | ||||
|     self.sample(t).or_else(move || { | ||||
|       let first = self.0.first().unwrap(); | ||||
|       if t <= first.t { | ||||
|         Some(first.value) | ||||
|       } else { | ||||
|         let last = self.0.last().unwrap(); | ||||
|  | ||||
|     let sampled = if t <= first.t { | ||||
|       first.value | ||||
|     } else if t >= last.t { | ||||
|       last.value | ||||
|     } else { | ||||
|       self.sample(t).unwrap() | ||||
|     }; | ||||
|  | ||||
|     Some(sampled) | ||||
|         if t >= last.t { | ||||
|           Some(last.value) | ||||
|         } else { | ||||
|           None | ||||
|         } | ||||
|       } | ||||
|     }) | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -334,7 +319,7 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> { | ||||
| /// | ||||
| /// `T` is the variable used to sample with. Typical implementations use `f32` or `f64`, but you’re | ||||
| /// free to use the ones you like. | ||||
| pub trait Interpolate<T>: Copy where T: Copy + Float { | ||||
| pub trait Interpolate<T>: Sized + Copy { | ||||
|   /// Linear interpolation. | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self; | ||||
|  | ||||
| @@ -346,145 +331,94 @@ pub trait Interpolate<T>: Copy where T: Copy + Float { | ||||
|   } | ||||
| } | ||||
|  | ||||
| impl Interpolate<f32> for f32 { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     a * (1. - t) + b * t | ||||
|   } | ||||
| macro_rules! impl_interpolate_simple { | ||||
|   ($t:ty) => { | ||||
|     impl Interpolate<$t> for $t { | ||||
|       fn lerp(a: Self, b: Self, t: $t) -> Self { | ||||
|         a * (1. - t) + b * t | ||||
|       } | ||||
|  | ||||
|   fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self { | ||||
|     cubic_hermite(x, a, b, y, t) | ||||
|       fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self { | ||||
|         cubic_hermite_def(x, a, b, y, t) | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| impl Interpolate<f32> for f64 { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     a * (1. - t as f64) + b * t as f64 | ||||
|   } | ||||
| impl_interpolate_simple!(f32); | ||||
| impl_interpolate_simple!(f64); | ||||
|  | ||||
|   fn cubic_hermite( | ||||
|     (x, tx): (Self, f32), | ||||
|     (a, ta): (Self, f32), | ||||
|     (b, tb): (Self, f32), | ||||
|     (y, ty): (Self, f32), | ||||
|     t: f32 | ||||
|   ) -> Self { | ||||
|     cubic_hermite((x, tx as f64), (a, ta as f64), (b, tb as f64), (y, ty as f64), t as f64) | ||||
| macro_rules! impl_interpolate_via { | ||||
|   ($t:ty, $v:ty) => { | ||||
|     impl Interpolate<$t> for $v { | ||||
|       fn lerp(a: Self, b: Self, t: $t) -> Self { | ||||
|         a * (1. - t as $v) + b * t as $v | ||||
|       } | ||||
|  | ||||
|       fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self { | ||||
|         cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v) | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-cgmath")] | ||||
| impl<T> Interpolate<T> for Vector2<T> where T: BaseFloat { | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self { | ||||
|     a.lerp(b, t) | ||||
|   } | ||||
| impl_interpolate_via!(f32, f64); | ||||
| impl_interpolate_via!(f64, f32); | ||||
|  | ||||
|   fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self { | ||||
|     cubic_hermite(x, a, b, y, t) | ||||
| macro_rules! impl_interpolate_na_vector { | ||||
|   ($($t:tt)*) => { | ||||
|     #[cfg(feature = "impl-nalgebra")] | ||||
|     impl<T, V> Interpolate<T> for $($t)*<V> where T: Float, V: na::Scalar + Interpolate<T> { | ||||
|       fn lerp(a: Self, b: Self, t: T) -> Self { | ||||
|         na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-cgmath")] | ||||
| impl<T> Interpolate<T> for Vector3<T> where T: BaseFloat { | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self { | ||||
|     a.lerp(b, t) | ||||
|   } | ||||
|  | ||||
|   fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self { | ||||
|     cubic_hermite(x, a, b, y, t) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-cgmath")] | ||||
| impl<T> Interpolate<T> for Vector4<T> where T: BaseFloat { | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self { | ||||
|     a.lerp(b, t) | ||||
|   } | ||||
|  | ||||
|   fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self { | ||||
|     cubic_hermite(x, a, b, y, t) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-cgmath")] | ||||
| impl<T> Interpolate<T> for Quaternion<T> where T: BaseFloat { | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self { | ||||
|     a.nlerp(b, t) | ||||
|   } | ||||
| } | ||||
| impl_interpolate_na_vector!(na::Vector1); | ||||
| impl_interpolate_na_vector!(na::Vector2); | ||||
| impl_interpolate_na_vector!(na::Vector3); | ||||
| impl_interpolate_na_vector!(na::Vector4); | ||||
| impl_interpolate_na_vector!(na::Vector5); | ||||
| impl_interpolate_na_vector!(na::Vector6); | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl<N, D> Interpolate for na::Point<N, D> | ||||
| where D: DimName, | ||||
|       DefaultAllocator: Allocator<N, D>, | ||||
|       <DefaultAllocator as Allocator<N, D>>::Buffer: Copy, | ||||
|       N: Scalar + Interpolate { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
| impl<T, N, D> Interpolate<T> for na::Point<N, D> | ||||
| where D: na::DimName, | ||||
|       na::DefaultAllocator: na::allocator::Allocator<N, D>, | ||||
|       <na::DefaultAllocator as na::allocator::Allocator<N, D>>::Buffer: Copy, | ||||
|       N: na::Scalar + Interpolate<T>, | ||||
|       T: Float { | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self { | ||||
|     // The 'coords' of a point is just a vector, so we can interpolate component-wise | ||||
|     // over these vectors. | ||||
|     let coords = na::Vector::zip_map(&a.coords, &b.coords, |c1, c2| Interpolate::lerp(c1, c2, t)); | ||||
|     na::Point::from_coordinates(coords) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl Interpolate for na::Vector1<f32> { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl Interpolate for na::Vector2<f32> { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl Interpolate for na::Vector3<f32> { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl Interpolate for na::Vector4<f32> { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl Interpolate for na::Vector5<f32> { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|   } | ||||
| } | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] | ||||
| impl Interpolate for na::Vector6<f32> { | ||||
|   fn lerp(a: Self, b: Self, t: f32) -> Self { | ||||
|     na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t)) | ||||
|     na::Point::from(coords) | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Default implementation of Interpolate::cubic_hermite. | ||||
| // | ||||
| // `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). | ||||
| pub(crate) fn cubic_hermite<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V | ||||
| where V: Copy + Add<Output = V> + Sub<Output = V> + Mul<T, Output = V> + Div<T, Output = V>, | ||||
|       T: Mul<Output = T> + Mul<f32, Output = T> + Add<Output = T> + Add<f32, Output = T> + Sub<Output = T> { | ||||
| pub(crate) fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V | ||||
| where V: Float + Mul<T, Output = V> + Div<T, Output = V>, | ||||
|       T: Float { | ||||
|   // some stupid generic constants, because Rust doesn’t have polymorphic literals… | ||||
|   let two_t = T::one() + T::one(); // lolololol | ||||
|   let three_t = two_t + T::one(); // megalol | ||||
|  | ||||
|   // sampler stuff | ||||
|   let t2 = t* t; | ||||
|   let t2 = t * t; | ||||
|   let t3 = t2 * t; | ||||
|   let two_t3 = t3 * 2.; | ||||
|   let three_t2 = t2 * 3.; | ||||
|   let two_t3 = t3 * two_t; | ||||
|   let three_t2 = t2 * three_t; | ||||
|  | ||||
|   // tangents | ||||
|   let m0 = (b.0 - x.0) / (b.1 - x.1); | ||||
| 	let m1 = (y.0 - a.0) / (y.1 - a.1); | ||||
|   let m1 = (y.0 - a.0) / (y.1 - a.1); | ||||
|  | ||||
|   a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - t2 * 2. + t) + b.0 * (three_t2 - two_t3) + m1 * (t3 - t2) | ||||
|   a.0 * (two_t3 - three_t2 + T::one()) + m0 * (t3 - t2 * two_t + t) + b.0 * (three_t2 - two_t3) + m1 * (t3 - t2) | ||||
| } | ||||
|  | ||||
| // Normalize a time ([0;1]) given two control points. | ||||
| @@ -493,7 +427,7 @@ pub(crate) fn normalize_time<T, V>( | ||||
|   t: T, | ||||
|   cp: &Key<T, V>, | ||||
|   cp1: &Key<T, V> | ||||
| ) -> T where T: PartialEq + Sub<Output = T> + Div<Output = T> { | ||||
| ) -> T where T: Float { | ||||
|   assert!(cp1.t != cp.t, "overlapping keys"); | ||||
|   (t - cp.t) / (cp1.t - cp.t) | ||||
| } | ||||
|   | ||||
							
								
								
									
										11
									
								
								tests/mod.rs
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								tests/mod.rs
									
									
									
									
									
								
							| @@ -1,10 +1,5 @@ | ||||
| extern crate splines; | ||||
| #[cfg(feature = "impl-nalgebra")] extern crate nalgebra; | ||||
|  | ||||
| #[cfg(feature = "impl-nalgebra")] use nalgebra as na; | ||||
| #[cfg(feature = "impl-nalgebra")] use splines::Interpolate; | ||||
|  | ||||
| use splines::{Interpolation, Key, Spline}; | ||||
| use splines::{Interpolate, Interpolation, Key, Spline}; | ||||
| use nalgebra as na; | ||||
|  | ||||
| #[test] | ||||
| fn step_interpolation_0() { | ||||
| @@ -125,7 +120,7 @@ fn several_interpolations_several_keys() { | ||||
|   assert_eq!(spline.sample(1.5), Some(2.5)); | ||||
|   assert_eq!(spline.sample(2.), Some(0.)); | ||||
|   assert_eq!(spline.sample(2.05), Some(0.)); | ||||
|   assert_eq!(spline.sample(2.1), Some(0.)); | ||||
|   assert_eq!(spline.sample(2.099), Some(0.)); | ||||
|   assert_eq!(spline.sample(2.75), Some(1.)); | ||||
|   assert_eq!(spline.sample(3.), Some(1.)); | ||||
|   assert_eq!(spline.sample(6.5), Some(1.5)); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user