commit
5d0ebc0777
@ -1,8 +1,11 @@
|
||||
# 1.1
|
||||
# 1.1.1
|
||||
|
||||
> Mon Sep 22rd 2019
|
||||
|
||||
- Yanked.
|
||||
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve). This is
|
||||
normally a breaking change so it’s currently disabled by default and available via the
|
||||
`"bezier"` feature-gate.
|
||||
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||
|
||||
# 1.0
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "1.1.0"
|
||||
version = "1.1.1"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
|
@ -2,7 +2,9 @@ use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||
};
|
||||
|
||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
@ -29,6 +31,18 @@ macro_rules! impl_interpolate_vec {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -61,4 +75,16 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
|
@ -59,9 +59,11 @@ pub trait Interpolate<T>: Sized + Copy {
|
||||
}
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
#[cfg(feature = "bezier")]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
#[cfg(feature = "bezier")]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
}
|
||||
|
||||
@ -221,6 +223,7 @@ where V: Linear<T>,
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
#[cfg(feature = "bezier")]
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
@ -232,6 +235,7 @@ where V: Linear<T>,
|
||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
#[cfg(feature = "bezier")]
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
@ -254,10 +258,12 @@ macro_rules! impl_interpolate_simple {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
@ -268,27 +274,29 @@ macro_rules! impl_interpolate_simple {
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
//macro_rules! impl_interpolate_via {
|
||||
// ($t:ty, $v:ty) => {
|
||||
// impl Interpolate<$t> for $v {
|
||||
// fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
// a * (1. - t as $v) + b * t as $v
|
||||
// }
|
||||
//
|
||||
// fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
// cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
// }
|
||||
//
|
||||
// fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
// $t::quadratic_bezier(a as $t, u as $t, b as $t, t)
|
||||
// }
|
||||
//
|
||||
// fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
// $t::cubic_bezier(a as $t, u as $t, v as $t, b as $t, t)
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//impl_interpolate_via!(f32, f64);
|
||||
//impl_interpolate_via!(f64, f32);
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
|
@ -5,11 +5,12 @@
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
/// Feel free to visit each variant for more documentation.
|
||||
#[cfg(feature = "bezier")]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
@ -17,7 +18,7 @@ pub enum Interpolation<T, V> {
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key<T, _>`]: crate::key::Key
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
@ -41,11 +42,35 @@ pub enum Interpolation<T, V> {
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
#[cfg(feature = "bezier")]
|
||||
Bezier(V),
|
||||
#[cfg(not(any(feature = "bezier")))]
|
||||
#[doc(hidden)]
|
||||
_V(std::marker::PhantomData<V>),
|
||||
}
|
||||
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
/// Feel free to visit each variant for more documentation.
|
||||
#[cfg(not(feature = "bezier"))]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom,
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
@ -53,3 +78,10 @@ impl<T, V> Default for Interpolation<T, V> {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "bezier"))]
|
||||
impl<T> Default for Interpolation<T> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
28
src/key.rs
28
src/key.rs
@ -17,6 +17,7 @@ use crate::interpolation::Interpolation;
|
||||
/// key and the next one – if existing. Have a look at [`Interpolation`] for further details.
|
||||
///
|
||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||
#[cfg(feature = "bezier")]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
@ -29,9 +30,36 @@ pub struct Key<T, V> {
|
||||
pub interpolation: Interpolation<T, V>
|
||||
}
|
||||
|
||||
/// A spline control point.
|
||||
///
|
||||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||||
/// interpolation mode used to determine how to interpolate values on the segment defined by this
|
||||
/// key and the next one – if existing. Have a look at [`Interpolation`] for further details.
|
||||
///
|
||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||
#[cfg(not(feature = "bezier"))]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
#[cfg(feature = "bezier")]
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
|
||||
/// Create a new key.
|
||||
#[cfg(not(feature = "bezier"))]
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
|
||||
use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
|
||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
@ -40,6 +42,18 @@ macro_rules! impl_interpolate_vector {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -146,9 +146,6 @@ impl<T, V> Spline<T, V> {
|
||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(any(feature = "bezier")))]
|
||||
Interpolation::_V(_) => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
@ -199,6 +196,57 @@ impl<T, V> Spline<T, V> {
|
||||
Some(self.0.remove(index))
|
||||
}
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(
|
||||
&mut self,
|
||||
index: usize,
|
||||
f: F
|
||||
) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
///
|
||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
#[cfg(feature = "bezier")]
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
#[cfg(not(feature = "bezier"))]
|
||||
pub interpolation: &'a mut Interpolation<T>,
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
|
Loading…
Reference in New Issue
Block a user