Add rustfmt.toml and reformat.
This commit is contained in:
parent
1bcf1de99e
commit
89dfb61272
@ -3,12 +3,12 @@ extern crate splines;
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
fn main() {
|
||||
let keys = vec![
|
||||
Key::new(0., 0., Interpolation::default()),
|
||||
Key::new(5., 1., Interpolation::default()),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
let keys = vec![
|
||||
Key::new(0., 0., Interpolation::default()),
|
||||
Key::new(5., 1., Interpolation::default()),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
println!("value at 0: {:?}", spline.clamped_sample(0.));
|
||||
println!("value at 3: {:?}", spline.clamped_sample(3.));
|
||||
println!("value at 0: {:?}", spline.clamped_sample(0.));
|
||||
println!("value at 3: {:?}", spline.clamped_sample(3.));
|
||||
}
|
||||
|
@ -6,26 +6,26 @@ use serde_json::from_value;
|
||||
use splines::Spline;
|
||||
|
||||
fn main() {
|
||||
let value = json! {
|
||||
[
|
||||
{
|
||||
"t": 0,
|
||||
"interpolation": "linear",
|
||||
"value": 0
|
||||
},
|
||||
{
|
||||
"t": 1,
|
||||
"interpolation": { "step": 0.5 },
|
||||
"value": 1
|
||||
},
|
||||
{
|
||||
"t": 5,
|
||||
"interpolation": "cosine",
|
||||
"value": 10
|
||||
},
|
||||
]
|
||||
};
|
||||
let value = json! {
|
||||
[
|
||||
{
|
||||
"t": 0,
|
||||
"interpolation": "linear",
|
||||
"value": 0
|
||||
},
|
||||
{
|
||||
"t": 1,
|
||||
"interpolation": { "step": 0.5 },
|
||||
"value": 1
|
||||
},
|
||||
{
|
||||
"t": 5,
|
||||
"interpolation": "cosine",
|
||||
"value": 10
|
||||
},
|
||||
]
|
||||
};
|
||||
|
||||
let spline = from_value::<Spline<f32, f32>>(value);
|
||||
println!("{:?}", spline);
|
||||
let spline = from_value::<Spline<f32, f32>>(value);
|
||||
println!("{:?}", spline);
|
||||
}
|
||||
|
15
rustfmt.toml
Normal file
15
rustfmt.toml
Normal file
@ -0,0 +1,15 @@
|
||||
edition = "2018"
|
||||
|
||||
fn_args_layout = "Tall"
|
||||
force_explicit_abi = true
|
||||
hard_tabs = false
|
||||
max_width = 100
|
||||
merge_derives = true
|
||||
newline_style = "Unix"
|
||||
remove_nested_parens = true
|
||||
reorder_imports = true
|
||||
reorder_modules = true
|
||||
tab_spaces = 2
|
||||
use_field_init_shorthand = true
|
||||
use_small_heuristics = "Default"
|
||||
use_try_shorthand = true
|
@ -1,9 +1,9 @@
|
||||
use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
|
||||
};
|
||||
|
||||
use crate::interpolate::{
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
@ -52,41 +52,41 @@ impl_interpolate_vec!(Vector4);
|
||||
|
||||
impl<T> Linear<T> for Quaternion<T>
|
||||
where
|
||||
T: BaseFloat,
|
||||
T: BaseFloat,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Interpolate<T> for Quaternion<T>
|
||||
where
|
||||
Self: InnerSpace<Scalar = T>,
|
||||
T: Additive + BaseFloat + One,
|
||||
Self: InnerSpace<Scalar = T>,
|
||||
T: Additive + BaseFloat + One,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.nlerp(b, t)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.nlerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
|
@ -54,23 +54,23 @@ use std::ops::{Add, Mul, Sub};
|
||||
///
|
||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
||||
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to [`lerp`].
|
||||
///
|
||||
/// [`lerp`]: Interpolate::lerp
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to [`lerp`].
|
||||
///
|
||||
/// [`lerp`]: Interpolate::lerp
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
/// Quadratic Bézier interpolation.
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
/// Cubic Bézier interpolation.
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
}
|
||||
|
||||
/// Set of types that support additions and subtraction.
|
||||
@ -82,44 +82,44 @@ impl<T> Additive for T where T: Copy + Add<Self, Output = Self> + Sub<Self, Outp
|
||||
|
||||
/// Set of additive types that support outer multiplication and division, making them linear.
|
||||
pub trait Linear<T>: Additive {
|
||||
/// Apply an outer multiplication law.
|
||||
fn outer_mul(self, t: T) -> Self;
|
||||
/// Apply an outer multiplication law.
|
||||
fn outer_mul(self, t: T) -> Self;
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: T) -> Self;
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: T) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_linear_simple {
|
||||
($t:ty) => {
|
||||
impl Linear<$t> for $t {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t
|
||||
}
|
||||
($t:ty) => {
|
||||
impl Linear<$t> for $t {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
};
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_linear_simple!(f32);
|
||||
impl_linear_simple!(f64);
|
||||
|
||||
macro_rules! impl_linear_cast {
|
||||
($t:ty, $q:ty) => {
|
||||
impl Linear<$t> for $q {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t as $q
|
||||
}
|
||||
($t:ty, $q:ty) => {
|
||||
impl Linear<$t> for $q {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t as $q
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t as $q
|
||||
}
|
||||
}
|
||||
};
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t as $q
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_linear_cast!(f32, f64);
|
||||
@ -127,19 +127,19 @@ impl_linear_cast!(f64, f32);
|
||||
|
||||
/// Types with a neutral element for multiplication.
|
||||
pub trait One {
|
||||
/// The neutral element for the multiplicative monoid — typically called `1`.
|
||||
fn one() -> Self;
|
||||
/// The neutral element for the multiplicative monoid — typically called `1`.
|
||||
fn one() -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_one_float {
|
||||
($t:ty) => {
|
||||
impl One for $t {
|
||||
#[inline(always)]
|
||||
fn one() -> Self {
|
||||
1.
|
||||
}
|
||||
}
|
||||
};
|
||||
($t:ty) => {
|
||||
impl One for $t {
|
||||
#[inline(always)]
|
||||
fn one() -> Self {
|
||||
1.
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_one_float!(f32);
|
||||
@ -147,51 +147,51 @@ impl_one_float!(f64);
|
||||
|
||||
/// Types with a sane definition of π and cosine.
|
||||
pub trait Trigo {
|
||||
/// π.
|
||||
fn pi() -> Self;
|
||||
/// π.
|
||||
fn pi() -> Self;
|
||||
|
||||
/// Cosine of the argument.
|
||||
fn cos(self) -> Self;
|
||||
/// Cosine of the argument.
|
||||
fn cos(self) -> Self;
|
||||
}
|
||||
|
||||
impl Trigo for f32 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f32::consts::PI
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f32::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf32(self) }
|
||||
}
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf32(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Trigo for f64 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f64::consts::PI
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f64::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf64(self) }
|
||||
}
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf64(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_hermite`].
|
||||
@ -199,28 +199,28 @@ impl Trigo for f64 {
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let one_t = T::one();
|
||||
let two_t = one_t + one_t; // lolololol
|
||||
let three_t = two_t + one_t; // megalol
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let one_t = T::one();
|
||||
let two_t = one_t + one_t; // lolololol
|
||||
let three_t = two_t + one_t; // megalol
|
||||
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
||||
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t)
|
||||
+ m0.outer_mul(t3 - t2 * two_t + t)
|
||||
+ b.0.outer_mul(three_t2 - two_t3)
|
||||
+ m1.outer_mul(t3 - t2)
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t)
|
||||
+ m0.outer_mul(t3 - t2 * two_t + t)
|
||||
+ b.0.outer_mul(three_t2 - two_t3)
|
||||
+ m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
@ -228,12 +228,12 @@ where
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||
@ -241,83 +241,77 @@ where
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3)
|
||||
+ u.outer_mul(three * one_t_2 * t)
|
||||
+ v.outer_mul(three * one_t * t * t)
|
||||
+ b.outer_mul(t * t * t)
|
||||
a.outer_mul(one_t_3)
|
||||
+ u.outer_mul(three * one_t_2 * t)
|
||||
+ v.outer_mul(three * one_t * t * t)
|
||||
+ b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
|
||||
fn cubic_hermite(
|
||||
x: (Self, $t),
|
||||
a: (Self, $t),
|
||||
b: (Self, $t),
|
||||
y: (Self, $t),
|
||||
t: $t,
|
||||
) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
};
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite(
|
||||
(x, xt): (Self, $t),
|
||||
(a, at): (Self, $t),
|
||||
(b, bt): (Self, $t),
|
||||
(y, yt): (Self, $t),
|
||||
t: $t,
|
||||
) -> Self {
|
||||
cubic_hermite_def(
|
||||
(x, xt as $v),
|
||||
(a, at as $v),
|
||||
(b, bt as $v),
|
||||
(y, yt as $v),
|
||||
t as $v,
|
||||
)
|
||||
}
|
||||
fn cubic_hermite(
|
||||
(x, xt): (Self, $t),
|
||||
(a, at): (Self, $t),
|
||||
(b, bt): (Self, $t),
|
||||
(y, yt): (Self, $t),
|
||||
t: $t,
|
||||
) -> Self {
|
||||
cubic_hermite_def(
|
||||
(x, xt as $v),
|
||||
(a, at as $v),
|
||||
(b, bt as $v),
|
||||
(y, yt as $v),
|
||||
t as $v,
|
||||
)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
};
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
|
@ -10,56 +10,56 @@ use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom,
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||
/// cases are possible:
|
||||
///
|
||||
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||
/// kicks ass.
|
||||
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||
///
|
||||
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||
///
|
||||
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||
/// control on the tangents but might generate discontinuities. Use with care.
|
||||
///
|
||||
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||
StrokeBezier(V, V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive,
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom,
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||
/// cases are possible:
|
||||
///
|
||||
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||
/// kicks ass.
|
||||
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||
///
|
||||
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||
///
|
||||
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||
/// control on the tangents but might generate discontinuities. Use with care.
|
||||
///
|
||||
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||
StrokeBezier(V, V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive,
|
||||
}
|
||||
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
34
src/iter.rs
34
src/iter.rs
@ -13,32 +13,32 @@ use crate::{Key, Spline};
|
||||
/// This iterator type is guaranteed to iterate over sorted keys.
|
||||
pub struct Iter<'a, T, V>
|
||||
where
|
||||
T: 'a,
|
||||
V: 'a,
|
||||
T: 'a,
|
||||
V: 'a,
|
||||
{
|
||||
spline: &'a Spline<T, V>,
|
||||
i: usize,
|
||||
spline: &'a Spline<T, V>,
|
||||
i: usize,
|
||||
}
|
||||
|
||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
type Item = &'a Key<T, V>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let r = self.spline.0.get(self.i);
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let r = self.spline.0.get(self.i);
|
||||
|
||||
if let Some(_) = r {
|
||||
self.i += 1;
|
||||
}
|
||||
|
||||
r
|
||||
if let Some(_) = r {
|
||||
self.i += 1;
|
||||
}
|
||||
|
||||
r
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
type Item = &'a Key<T, V>;
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter { spline: self, i: 0 }
|
||||
}
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter { spline: self, i: 0 }
|
||||
}
|
||||
}
|
||||
|
26
src/key.rs
26
src/key.rs
@ -22,21 +22,21 @@ use crate::interpolation::Interpolation;
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T, V>,
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T, V>,
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key {
|
||||
t,
|
||||
value,
|
||||
interpolation,
|
||||
}
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key {
|
||||
t,
|
||||
value,
|
||||
interpolation,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -4,7 +4,7 @@ use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
|
||||
use crate::interpolate::{
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
|
547
src/spline.rs
547
src/spline.rs
@ -34,268 +34,265 @@ use crate::key::Key;
|
||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||
fn internal_sort(&mut self)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self.0
|
||||
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
}
|
||||
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||
fn internal_sort(&mut self)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self
|
||||
.0
|
||||
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
}
|
||||
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
let mut spline = Spline(keys);
|
||||
spline.internal_sort();
|
||||
spline
|
||||
}
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
let mut spline = Spline(keys);
|
||||
spline.internal_sort();
|
||||
spline
|
||||
}
|
||||
|
||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||
/// sorted.
|
||||
///
|
||||
/// # Note on iterators
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||
pub fn from_iter<I>(iter: I) -> Self
|
||||
where
|
||||
I: Iterator<Item = Key<T, V>>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||
/// sorted.
|
||||
///
|
||||
/// # Note on iterators
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||
pub fn from_iter<I>(iter: I) -> Self
|
||||
where
|
||||
I: Iterator<Item = Key<T, V>>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
|
||||
/// Retrieve the keys of a spline.
|
||||
pub fn keys(&self) -> &[Key<T, V>] {
|
||||
&self.0
|
||||
}
|
||||
/// Retrieve the keys of a spline.
|
||||
pub fn keys(&self) -> &[Key<T, V>] {
|
||||
&self.0
|
||||
}
|
||||
|
||||
/// Number of keys.
|
||||
#[inline(always)]
|
||||
pub fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
/// Number of keys.
|
||||
#[inline(always)]
|
||||
pub fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
/// Check whether the spline has no key.
|
||||
#[inline(always)]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.0.is_empty()
|
||||
}
|
||||
/// Check whether the spline has no key.
|
||||
#[inline(always)]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
|
||||
match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||||
// None.
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
let cp1 = &keys[i + 1];
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite(
|
||||
(cpm0.value, cpm0.t),
|
||||
(cp0.value, cp0.t),
|
||||
(cp1.value, cp1.t),
|
||||
(cpm1.value, cpm1.t),
|
||||
nt,
|
||||
);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
let value = match cp1.interpolation {
|
||||
Interpolation::Bezier(v) => Interpolate::cubic_bezier(
|
||||
cp0.value,
|
||||
u,
|
||||
cp1.value + cp1.value - v,
|
||||
cp1.value,
|
||||
nt,
|
||||
),
|
||||
|
||||
Interpolation::StrokeBezier(v, _) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
}
|
||||
|
||||
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// If you sample before the first key or after the last one, return the first key or the last
|
||||
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
|
||||
///
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
let second = if self.0.len() >= 2 {
|
||||
Some(&self.0[1])
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Some((first.value, &first, second))
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some((last.value, &last, None))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self.0.push(key);
|
||||
self.internal_sort();
|
||||
}
|
||||
|
||||
/// Remove a key from the spline.
|
||||
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
|
||||
if index >= self.0.len() {
|
||||
None
|
||||
Interpolation::CatmullRom => {
|
||||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||||
// None.
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
Some(self.0.remove(index))
|
||||
let cp1 = &keys[i + 1];
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite(
|
||||
(cpm0.value, cpm0.t),
|
||||
(cp0.value, cp0.t),
|
||||
(cp1.value, cp1.t),
|
||||
(cpm1.value, cpm1.t),
|
||||
nt,
|
||||
);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
let value = match cp1.interpolation {
|
||||
Interpolation::Bezier(v) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
|
||||
}
|
||||
|
||||
Interpolation::StrokeBezier(v, _) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
}
|
||||
|
||||
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// If you sample before the first key or after the last one, return the first key or the last
|
||||
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
|
||||
///
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
let second = if self.0.len() >= 2 {
|
||||
Some(&self.0[1])
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Some((first.value, &first, second))
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
if t >= last.t {
|
||||
Some((last.value, &last, None))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation,
|
||||
})
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self.0.push(key);
|
||||
self.internal_sort();
|
||||
}
|
||||
|
||||
/// Remove a key from the spline.
|
||||
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
|
||||
if index >= self.0.len() {
|
||||
None
|
||||
} else {
|
||||
Some(self.0.remove(index))
|
||||
}
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
@ -304,54 +301,54 @@ impl<T, V> Spline<T, V> {
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T, V>(t: T, cp: &Key<T, V>, cp1: &Key<T, V>) -> T
|
||||
where
|
||||
T: Additive + Div<T, Output = T> + PartialEq,
|
||||
T: Additive + Div<T, Output = T> + PartialEq,
|
||||
{
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
|
||||
where
|
||||
T: PartialOrd,
|
||||
T: PartialOrd,
|
||||
{
|
||||
let mut i = 0;
|
||||
let len = cps.len();
|
||||
let mut i = 0;
|
||||
let len = cps.len();
|
||||
|
||||
if len < 2 {
|
||||
if len < 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
loop {
|
||||
let cp = &cps[i];
|
||||
let cp1 = &cps[i + 1];
|
||||
|
||||
if t >= cp1.t {
|
||||
if i >= len - 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
} else if t < cp.t {
|
||||
if i == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i -= 1;
|
||||
} else {
|
||||
break; // found
|
||||
}
|
||||
}
|
||||
|
||||
loop {
|
||||
let cp = &cps[i];
|
||||
let cp1 = &cps[i + 1];
|
||||
|
||||
if t >= cp1.t {
|
||||
if i >= len - 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
} else if t < cp.t {
|
||||
if i == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i -= 1;
|
||||
} else {
|
||||
break; // found
|
||||
}
|
||||
}
|
||||
|
||||
Some(i)
|
||||
Some(i)
|
||||
}
|
||||
|
336
tests/mod.rs
336
tests/mod.rs
@ -7,249 +7,249 @@ use nalgebra as na;
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_f32() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::<f32, _>::from_vec(vec![start, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::<f32, _>::from_vec(vec![start, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(10.));
|
||||
assert_eq!(spline.sample(0.1), Some(10.));
|
||||
assert_eq!(spline.sample(0.2), Some(10.));
|
||||
assert_eq!(spline.sample(0.5), Some(10.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
assert_eq!(spline.sample(0.), Some(10.));
|
||||
assert_eq!(spline.sample(0.1), Some(10.));
|
||||
assert_eq!(spline.sample(0.2), Some(10.));
|
||||
assert_eq!(spline.sample(0.5), Some(10.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_f64() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::<f64, _>::from_vec(vec![start, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::<f64, _>::from_vec(vec![start, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(10.));
|
||||
assert_eq!(spline.sample(0.1), Some(10.));
|
||||
assert_eq!(spline.sample(0.2), Some(10.));
|
||||
assert_eq!(spline.sample(0.5), Some(10.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
assert_eq!(spline.sample(0.), Some(10.));
|
||||
assert_eq!(spline.sample(0.1), Some(10.));
|
||||
assert_eq!(spline.sample(0.2), Some(10.));
|
||||
assert_eq!(spline.sample(0.5), Some(10.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_0_5() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(10.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(10.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_0_75() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.75));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.75));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(0.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(0.));
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_1() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(1.));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(1.));
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(0.));
|
||||
assert_eq!(spline.sample(0.9), Some(0.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(0.));
|
||||
assert_eq!(spline.sample(0.9), Some(0.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpolation() {
|
||||
let start = Key::new(0., 0., Interpolation::Linear);
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Linear);
|
||||
let end = Key::new(1., 10., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(1.));
|
||||
assert_eq!(spline.sample(0.2), Some(2.));
|
||||
assert_eq!(spline.sample(0.5), Some(5.));
|
||||
assert_eq!(spline.sample(0.9), Some(9.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(1.));
|
||||
assert_eq!(spline.sample(0.2), Some(2.));
|
||||
assert_eq!(spline.sample(0.5), Some(5.));
|
||||
assert_eq!(spline.sample(0.9), Some(9.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpolation_several_keys() {
|
||||
let start = Key::new(0., 0., Interpolation::Linear);
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Linear);
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Linear);
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Linear);
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.5));
|
||||
assert_eq!(spline.sample(0.2), Some(1.));
|
||||
assert_eq!(spline.sample(0.5), Some(2.5));
|
||||
assert_eq!(spline.sample(0.9), Some(4.5));
|
||||
assert_eq!(spline.sample(1.), Some(5.));
|
||||
assert_eq!(spline.sample(1.5), Some(2.5));
|
||||
assert_eq!(spline.sample(2.), Some(0.));
|
||||
assert_eq!(spline.sample(2.75), Some(0.75));
|
||||
assert_eq!(spline.sample(3.), Some(1.));
|
||||
assert_eq!(spline.sample(6.5), Some(1.5));
|
||||
assert_eq!(spline.sample(10.), Some(2.));
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.5));
|
||||
assert_eq!(spline.sample(0.2), Some(1.));
|
||||
assert_eq!(spline.sample(0.5), Some(2.5));
|
||||
assert_eq!(spline.sample(0.9), Some(4.5));
|
||||
assert_eq!(spline.sample(1.), Some(5.));
|
||||
assert_eq!(spline.sample(1.5), Some(2.5));
|
||||
assert_eq!(spline.sample(2.), Some(0.));
|
||||
assert_eq!(spline.sample(2.75), Some(0.75));
|
||||
assert_eq!(spline.sample(3.), Some(1.));
|
||||
assert_eq!(spline.sample(6.5), Some(1.5));
|
||||
assert_eq!(spline.sample(10.), Some(2.));
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn several_interpolations_several_keys() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
|
||||
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(5.));
|
||||
assert_eq!(spline.sample(0.9), Some(5.));
|
||||
assert_eq!(spline.sample(1.), Some(5.));
|
||||
assert_eq!(spline.sample(1.5), Some(2.5));
|
||||
assert_eq!(spline.sample(2.), Some(0.));
|
||||
assert_eq!(spline.sample(2.05), Some(0.));
|
||||
assert_eq!(spline.sample(2.099), Some(0.));
|
||||
assert_eq!(spline.sample(2.75), Some(1.));
|
||||
assert_eq!(spline.sample(3.), Some(1.));
|
||||
assert_eq!(spline.sample(6.5), Some(1.5));
|
||||
assert_eq!(spline.sample(10.), Some(2.));
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.sample(0.1), Some(0.));
|
||||
assert_eq!(spline.sample(0.2), Some(0.));
|
||||
assert_eq!(spline.sample(0.5), Some(5.));
|
||||
assert_eq!(spline.sample(0.9), Some(5.));
|
||||
assert_eq!(spline.sample(1.), Some(5.));
|
||||
assert_eq!(spline.sample(1.5), Some(2.5));
|
||||
assert_eq!(spline.sample(2.), Some(0.));
|
||||
assert_eq!(spline.sample(2.05), Some(0.));
|
||||
assert_eq!(spline.sample(2.099), Some(0.));
|
||||
assert_eq!(spline.sample(2.75), Some(1.));
|
||||
assert_eq!(spline.sample(3.), Some(1.));
|
||||
assert_eq!(spline.sample(6.5), Some(1.5));
|
||||
assert_eq!(spline.sample(10.), Some(2.));
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "cgmath")]
|
||||
#[test]
|
||||
fn stroke_bezier_straight() {
|
||||
use float_cmp::approx_eq;
|
||||
use float_cmp::approx_eq;
|
||||
|
||||
let keys = vec![
|
||||
Key::new(
|
||||
0.0,
|
||||
cg::Vector2::new(0., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||
),
|
||||
Key::new(
|
||||
5.0,
|
||||
cg::Vector2::new(5., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||
),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
let keys = vec![
|
||||
Key::new(
|
||||
0.0,
|
||||
cg::Vector2::new(0., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||
),
|
||||
Key::new(
|
||||
5.0,
|
||||
cg::Vector2::new(5., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||
),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "cgmath")]
|
||||
#[test]
|
||||
fn cgmath_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = cg::Vector2::new(0.0, 0.0);
|
||||
let mid = cg::Vector2::new(0.5, 0.5);
|
||||
let end = cg::Vector2::new(1.0, 1.0);
|
||||
let start = cg::Vector2::new(0.0, 0.0);
|
||||
let mid = cg::Vector2::new(0.5, 0.5);
|
||||
let end = cg::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[cfg(feature = "nalgebra")]
|
||||
#[test]
|
||||
fn nalgebra_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = na::Vector2::new(0.0, 0.0);
|
||||
let mid = na::Vector2::new(0.5, 0.5);
|
||||
let end = na::Vector2::new(1.0, 1.0);
|
||||
let start = na::Vector2::new(0.0, 0.0);
|
||||
let mid = na::Vector2::new(0.5, 0.5);
|
||||
let end = na::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_key_empty() {
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||
spline.add(Key::new(0., 0., Interpolation::Linear));
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||
spline.add(Key::new(0., 0., Interpolation::Linear));
|
||||
|
||||
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
|
||||
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_key() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let new = Key::new(2.4, 40., Interpolation::Linear);
|
||||
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let new = Key::new(2.4, 40., Interpolation::Linear);
|
||||
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||
|
||||
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
|
||||
spline.add(new);
|
||||
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
|
||||
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
|
||||
spline.add(new);
|
||||
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn remove_element_empty() {
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||
let removed = spline.remove(0);
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||
let removed = spline.remove(0);
|
||||
|
||||
assert_eq!(removed, None);
|
||||
assert!(spline.is_empty());
|
||||
assert_eq!(removed, None);
|
||||
assert!(spline.is_empty());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn remove_element() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||
let removed = spline.remove(2);
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||
let removed = spline.remove(2);
|
||||
|
||||
assert_eq!(removed, Some(k2));
|
||||
assert_eq!(spline.len(), 5);
|
||||
assert_eq!(removed, Some(k2));
|
||||
assert_eq!(spline.len(), 5);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user