Add rustfmt.toml and reformat.

This commit is contained in:
Dimitri Sabadie
2020-03-19 01:22:26 +01:00
parent 1bcf1de99e
commit 89dfb61272
11 changed files with 751 additions and 745 deletions

View File

@ -1,9 +1,9 @@
use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
};
use crate::interpolate::{
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
};
macro_rules! impl_interpolate_vec {
@ -52,41 +52,41 @@ impl_interpolate_vec!(Vector4);
impl<T> Linear<T> for Quaternion<T>
where
T: BaseFloat,
T: BaseFloat,
{
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T>
where
Self: InnerSpace<Scalar = T>,
T: Additive + BaseFloat + One,
Self: InnerSpace<Scalar = T>,
T: Additive + BaseFloat + One,
{
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

View File

@ -54,23 +54,23 @@ use std::ops::{Add, Mul, Sub};
///
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
///
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Cubic hermite interpolation.
///
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Quadratic Bézier interpolation.
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// Set of types that support additions and subtraction.
@ -82,44 +82,44 @@ impl<T> Additive for T where T: Copy + Add<Self, Output = Self> + Sub<Self, Outp
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
}
macro_rules! impl_linear_simple {
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
}
};
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
}
};
}
impl_linear_simple!(f32);
impl_linear_simple!(f64);
macro_rules! impl_linear_cast {
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
};
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
};
}
impl_linear_cast!(f32, f64);
@ -127,19 +127,19 @@ impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
macro_rules! impl_one_float {
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
};
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
};
}
impl_one_float!(f32);
@ -147,51 +147,51 @@ impl_one_float!(f64);
/// Types with a sane definition of π and cosine.
pub trait Trigo {
/// π.
fn pi() -> Self;
/// π.
fn pi() -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
}
impl Trigo for f32 {
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
}
}
impl Trigo for f64 {
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
}
}
/// Default implementation of [`Interpolate::cubic_hermite`].
@ -199,28 +199,28 @@ impl Trigo for f64 {
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
{
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
a.0.outer_mul(two_t3 - three_t2 + one_t)
+ m0.outer_mul(t3 - t2 * two_t + t)
+ b.0.outer_mul(three_t2 - two_t3)
+ m1.outer_mul(t3 - t2)
a.0.outer_mul(two_t3 - three_t2 + one_t)
+ m0.outer_mul(t3 - t2 * two_t + t)
+ b.0.outer_mul(three_t2 - two_t3)
+ m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
@ -228,12 +228,12 @@ where
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
{
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
@ -241,83 +241,77 @@ where
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
{
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3)
+ u.outer_mul(three * one_t_2 * t)
+ v.outer_mul(three * one_t * t * t)
+ b.outer_mul(t * t * t)
a.outer_mul(one_t_3)
+ u.outer_mul(three * one_t_2 * t)
+ v.outer_mul(three * one_t * t * t)
+ b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(
x: (Self, $t),
a: (Self, $t),
b: (Self, $t),
y: (Self, $t),
t: $t,
) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
};
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
};
}
impl_interpolate_simple!(f32);
impl_interpolate_simple!(f64);
macro_rules! impl_interpolate_via {
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
fn cubic_hermite(
(x, xt): (Self, $t),
(a, at): (Self, $t),
(b, bt): (Self, $t),
(y, yt): (Self, $t),
t: $t,
) -> Self {
cubic_hermite_def(
(x, xt as $v),
(a, at as $v),
(b, bt as $v),
(y, yt as $v),
t as $v,
)
}
fn cubic_hermite(
(x, xt): (Self, $t),
(a, at): (Self, $t),
(b, bt): (Self, $t),
(y, yt): (Self, $t),
t: $t,
) -> Self {
cubic_hermite_def(
(x, xt as $v),
(a, at as $v),
(b, bt as $v),
(y, yt as $v),
t as $v,
)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
};
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
};
}
impl_interpolate_via!(f32, f64);

View File

@ -10,56 +10,56 @@ use serde_derive::{Deserialize, Serialize};
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
///
/// With this kind of interpolation, a control point has an input tangent, which has the same role
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
/// role defined by the next keys [`Interpolation::Bezier`] if present, normally.
///
/// What it means is that instead of setting the output tangent as the next keys Bézier tangent,
/// this interpolation mode allows you to manually set the output tangent. That will yield more
/// control on the tangents but might generate discontinuities. Use with care.
///
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
StrokeBezier(V, V),
#[doc(hidden)]
__NonExhaustive,
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
///
/// With this kind of interpolation, a control point has an input tangent, which has the same role
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
/// role defined by the next keys [`Interpolation::Bezier`] if present, normally.
///
/// What it means is that instead of setting the output tangent as the next keys Bézier tangent,
/// this interpolation mode allows you to manually set the output tangent. That will yield more
/// control on the tangents but might generate discontinuities. Use with care.
///
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
StrokeBezier(V, V),
#[doc(hidden)]
__NonExhaustive,
}
impl<T, V> Default for Interpolation<T, V> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

View File

@ -13,32 +13,32 @@ use crate::{Key, Spline};
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V>
where
T: 'a,
V: 'a,
T: 'a,
V: 'a,
{
spline: &'a Spline<T, V>,
i: usize,
spline: &'a Spline<T, V>,
i: usize,
}
impl<'a, T, V> Iterator for Iter<'a, T, V> {
type Item = &'a Key<T, V>;
type Item = &'a Key<T, V>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.spline.0.get(self.i);
fn next(&mut self) -> Option<Self::Item> {
let r = self.spline.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
type Item = &'a Key<T, V>;
type IntoIter = Iter<'a, T, V>;
type Item = &'a Key<T, V>;
type IntoIter = Iter<'a, T, V>;
fn into_iter(self) -> Self::IntoIter {
Iter { spline: self, i: 0 }
}
fn into_iter(self) -> Self::IntoIter {
Iter { spline: self, i: 0 }
}
}

View File

@ -22,21 +22,21 @@ use crate::interpolation::Interpolation;
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>,
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>,
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key {
t,
value,
interpolation,
}
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key {
t,
value,
interpolation,
}
}
}

View File

@ -4,7 +4,7 @@ use num_traits as nt;
use std::ops::Mul;
use crate::interpolate::{
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
};
macro_rules! impl_interpolate_vector {

View File

@ -34,268 +34,265 @@ use crate::key::Key;
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self)
where
T: PartialOrd,
{
self.0
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self)
where
T: PartialOrd,
{
self
.0
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
where
T: PartialOrd,
{
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
where
T: PartialOrd,
{
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self
where
I: Iterator<Item = Key<T, V>>,
T: PartialOrd,
{
Self::from_vec(iter.collect())
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self
where
I: Iterator<Item = Key<T, V>>,
T: PartialOrd,
{
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T, V>] {
&self.0
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T, V>] {
&self.0
}
/// Number of keys.
#[inline(always)]
pub fn len(&self) -> usize {
self.0.len()
}
/// Number of keys.
#[inline(always)]
pub fn len(&self) -> usize {
self.0.len()
}
/// Check whether the spline has no key.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Check whether the spline has no key.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = if nt < threshold { cp0.value } else { cp1.value };
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = if nt < threshold { cp0.value } else { cp1.value };
Some((value, cp0, Some(cp1)))
}
Some((value, cp0, Some(cp1)))
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Some((value, cp0, Some(cp1)))
}
Some((value, cp0, Some(cp1)))
}
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Some((value, cp0, Some(cp1)))
}
Some((value, cp0, Some(cp1)))
}
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite(
(cpm0.value, cpm0.t),
(cp0.value, cp0.t),
(cp1.value, cp1.t),
(cpm1.value, cpm1.t),
nt,
);
Some((value, cp0, Some(cp1)))
}
}
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = match cp1.interpolation {
Interpolation::Bezier(v) => Interpolate::cubic_bezier(
cp0.value,
u,
cp1.value + cp1.value - v,
cp1.value,
nt,
),
Interpolation::StrokeBezier(v, _) => {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
}
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
};
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
///
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
if self.0.is_empty() {
return None;
}
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
let second = if self.0.len() >= 2 {
Some(&self.0[1])
} else {
None
};
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some((last.value, &last, None))
} else {
None
}
}
})
}
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>)
where
T: PartialOrd,
{
self.0.push(key);
self.internal_sort();
}
/// Remove a key from the spline.
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
if index >= self.0.len() {
None
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
Some(self.0.remove(index))
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite(
(cpm0.value, cpm0.t),
(cp0.value, cp0.t),
(cp1.value, cp1.t),
(cpm1.value, cpm1.t),
nt,
);
Some((value, cp0, Some(cp1)))
}
}
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = match cp1.interpolation {
Interpolation::Bezier(v) => {
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
}
Interpolation::StrokeBezier(v, _) => {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
}
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
};
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
///
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
if self.0.is_empty() {
return None;
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd,
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
let second = if self.0.len() >= 2 {
Some(&self.0[1])
} else {
None
};
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
if t >= last.t {
Some((last.value, &last, None))
} else {
None
}
}
})
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation,
})
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>)
where
T: PartialOrd,
{
self.0.push(key);
self.internal_sort();
}
/// Remove a key from the spline.
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
if index >= self.0.len() {
None
} else {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd,
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation,
})
}
}
/// A mutable [`Key`].
@ -304,54 +301,54 @@ impl<T, V> Spline<T, V> {
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T, V>(t: T, cp: &Key<T, V>, cp1: &Key<T, V>) -> T
where
T: Additive + Div<T, Output = T> + PartialEq,
T: Additive + Div<T, Output = T> + PartialEq,
{
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
where
T: PartialOrd,
T: PartialOrd,
{
let mut i = 0;
let len = cps.len();
let mut i = 0;
let len = cps.len();
if len < 2 {
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i + 1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
loop {
let cp = &cps[i];
let cp1 = &cps[i + 1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
Some(i)
}