commit
b92c28cfbb
33
CHANGELOG.md
33
CHANGELOG.md
@ -2,6 +2,9 @@
|
||||
|
||||
<!-- vim-markdown-toc GFM -->
|
||||
|
||||
* [4.0](#40)
|
||||
* [Major changes](#major-changes)
|
||||
* [Patch changes](#patch-changes)
|
||||
* [3.5.4](#354)
|
||||
* [3.5.3](#353)
|
||||
* [3.5.2](#352)
|
||||
@ -14,19 +17,19 @@
|
||||
* [3.2](#32)
|
||||
* [3.1](#31)
|
||||
* [3.0](#30)
|
||||
* [Major changes](#major-changes)
|
||||
* [Patch changes](#patch-changes)
|
||||
* [Major changes](#major-changes-1)
|
||||
* [Patch changes](#patch-changes-1)
|
||||
* [2.2](#22)
|
||||
* [2.1.1](#211)
|
||||
* [2.1](#21)
|
||||
* [2.0.1](#201)
|
||||
* [2.0](#20)
|
||||
* [Major changes](#major-changes-1)
|
||||
* [Major changes](#major-changes-2)
|
||||
* [Minor changes](#minor-changes)
|
||||
* [1.0](#10)
|
||||
* [Major changes](#major-changes-2)
|
||||
* [Major changes](#major-changes-3)
|
||||
* [Minor changes](#minor-changes-1)
|
||||
* [Patch changes](#patch-changes-1)
|
||||
* [Patch changes](#patch-changes-2)
|
||||
* [0.2.3](#023)
|
||||
* [0.2.2](#022)
|
||||
* [0.2.1](#021)
|
||||
@ -36,6 +39,26 @@
|
||||
|
||||
<!-- vim-markdown-toc -->
|
||||
|
||||
# 4.0
|
||||
|
||||
> Mar 05, 2021
|
||||
|
||||
## Major changes
|
||||
|
||||
- Switch the `Interpolation` enum to `#[non_exhaustive]` to allow adding more interpolation modes (if any) in the
|
||||
future.
|
||||
- Introduce `SampledWithKey`, which is a more elegant / typed way to access a sample along with its associated key
|
||||
index.
|
||||
- Refactor the `Interpolate` trait and add the `Interpolator` trait.
|
||||
|
||||
## Patch changes
|
||||
|
||||
- Highly simplify the various implementors (`cgmath`, `nalgebra` and `glam`) so that maintenance is easy.
|
||||
- Expose the `impl_Interpolate` macro, allowing to implement the API all at once if a type implements the various
|
||||
`std::ops:*` traits. Since most of the crates do, this macro makes it really easy to add support for a crate.
|
||||
- Drop `simba` as a direct dependency.
|
||||
- Drop `num-traits` as a direct dependency.
|
||||
|
||||
# 3.5.4
|
||||
|
||||
> Feb 27, 2021
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "3.5.4"
|
||||
version = "4.0.0"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
@ -23,7 +23,7 @@ maintenance = { status = "actively-developed" }
|
||||
default = ["std"]
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-glam = ["glam"]
|
||||
impl-nalgebra = ["nalgebra", "num-traits", "simba"]
|
||||
impl-nalgebra = ["nalgebra"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
std = []
|
||||
|
||||
@ -31,10 +31,8 @@ std = []
|
||||
cgmath = { version = ">=0.17, <0.19", optional = true }
|
||||
glam = { version = ">=0.10, <0.13", optional = true }
|
||||
nalgebra = { version = ">=0.21, <0.25", optional = true }
|
||||
num-traits = { version = "0.2", optional = true }
|
||||
serde = { version = "1", optional = true }
|
||||
serde_derive = { version = "1", optional = true }
|
||||
simba = { version = ">=0.1.2, <0.5", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
float-cmp = ">=0.6, < 0.9"
|
||||
|
101
src/cgmath.rs
101
src/cgmath.rs
@ -1,92 +1,15 @@
|
||||
use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
|
||||
};
|
||||
use crate::impl_Interpolate;
|
||||
|
||||
use crate::interpolate::{
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
};
|
||||
use cgmath::{Quaternion, Vector1, Vector2, Vector3, Vector4};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
impl_Interpolate!(f32, Vector1<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector2<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector3<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector4<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Quaternion<f32>, std::f32::consts::PI);
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Interpolate<T> for $($t)*<T>
|
||||
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_vec!(Vector1);
|
||||
impl_interpolate_vec!(Vector2);
|
||||
impl_interpolate_vec!(Vector3);
|
||||
impl_interpolate_vec!(Vector4);
|
||||
|
||||
impl<T> Linear<T> for Quaternion<T>
|
||||
where
|
||||
T: BaseFloat,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Interpolate<T> for Quaternion<T>
|
||||
where
|
||||
Self: InnerSpace<Scalar = T>,
|
||||
T: Additive + BaseFloat + One,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.nlerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
impl_Interpolate!(f64, Vector1<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector2<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector3<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector4<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Quaternion<f64>, std::f64::consts::PI);
|
||||
|
92
src/glam.rs
92
src/glam.rs
@ -1,88 +1,8 @@
|
||||
use crate::impl_Interpolate;
|
||||
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
|
||||
|
||||
use crate::interpolate::{
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Interpolate, Linear,
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
impl Linear<f32> for $($t)* {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: f32) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: f32) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl Interpolate<f32> for $($t)* {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(
|
||||
x: (Self, f32),
|
||||
a: (Self, f32),
|
||||
b: (Self, f32),
|
||||
y: (Self, f32),
|
||||
t: f32,
|
||||
) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: f32) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: f32) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_vec!(Vec2);
|
||||
impl_interpolate_vec!(Vec3);
|
||||
impl_interpolate_vec!(Vec3A);
|
||||
impl_interpolate_vec!(Vec4);
|
||||
|
||||
impl Linear<f32> for Quat {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: f32) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: f32) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl Interpolate<f32> for Quat {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: f32) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: f32) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
impl_Interpolate!(f32, Vec2, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vec3, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vec3A, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vec4, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Quat, std::f32::consts::PI);
|
||||
|
@ -42,277 +42,126 @@ use core::ops::{Add, Mul, Sub};
|
||||
use std::f32;
|
||||
#[cfg(feature = "std")]
|
||||
use std::f64;
|
||||
#[cfg(feature = "std")]
|
||||
use std::ops::{Add, Mul, Sub};
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
/// Types that can be used as interpolator in splines.
|
||||
///
|
||||
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
||||
/// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
|
||||
/// instance to know which trait your type must implement to be usable.
|
||||
/// An interpolator value is like the fabric on which control keys (and sampled values) live on.
|
||||
pub trait Interpolator: Sized + Copy + PartialOrd {
|
||||
/// Normalize the interpolator.
|
||||
fn normalize(self, start: Self, end: Self) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_Interpolator {
|
||||
($t:ty) => {
|
||||
impl Interpolator for $t {
|
||||
fn normalize(self, start: Self, end: Self) -> Self {
|
||||
(self - start) / (end - start)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_Interpolator!(f32);
|
||||
impl_Interpolator!(f64);
|
||||
|
||||
/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines.
|
||||
///
|
||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
||||
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
|
||||
/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
||||
/// you’re free to use the ones you like.
|
||||
pub trait Interpolate<T>: Sized + Copy {
|
||||
/// Step interpolation.
|
||||
fn step(t: T, threshold: T, a: Self, b: Self) -> Self;
|
||||
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
fn lerp(t: T, a: Self, b: Self) -> Self;
|
||||
|
||||
/// Cosine interpolation.
|
||||
fn cosine(t: T, a: Self, b: Self) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to [`lerp`].
|
||||
///
|
||||
/// [`lerp`]: Interpolate::lerp
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self;
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
///
|
||||
/// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve.
|
||||
fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
///
|
||||
/// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the
|
||||
/// input tangent of `b` to the curve.
|
||||
fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation – special case for non-explicit second tangent.
|
||||
///
|
||||
/// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by
|
||||
/// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are
|
||||
/// mirrored for the same key).
|
||||
fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
|
||||
}
|
||||
|
||||
/// Set of types that support additions and subtraction.
|
||||
///
|
||||
/// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere.
|
||||
pub trait Additive: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {}
|
||||
|
||||
impl<T> Additive for T where T: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {}
|
||||
|
||||
/// Set of additive types that support outer multiplication and division, making them linear.
|
||||
pub trait Linear<T>: Additive {
|
||||
/// Apply an outer multiplication law.
|
||||
fn outer_mul(self, t: T) -> Self;
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: T) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_linear_simple {
|
||||
($t:ty) => {
|
||||
impl Linear<$t> for $t {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t
|
||||
#[macro_export]
|
||||
macro_rules! impl_Interpolate {
|
||||
($t:ty, $v:ty, $pi:expr) => {
|
||||
impl $crate::interpolate::Interpolate<$t> for $v {
|
||||
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
|
||||
if t < threshold {
|
||||
a
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_linear_simple!(f32);
|
||||
impl_linear_simple!(f64);
|
||||
|
||||
macro_rules! impl_linear_cast {
|
||||
($t:ty, $q:ty) => {
|
||||
impl Linear<$t> for $q {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t as $q
|
||||
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
|
||||
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t as $q
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_linear_cast!(f32, f64);
|
||||
impl_linear_cast!(f64, f32);
|
||||
|
||||
/// Types with a neutral element for multiplication.
|
||||
pub trait One {
|
||||
/// The neutral element for the multiplicative monoid — typically called `1`.
|
||||
fn one() -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_one_float {
|
||||
($t:ty) => {
|
||||
impl One for $t {
|
||||
#[inline(always)]
|
||||
fn one() -> Self {
|
||||
1.
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_one_float!(f32);
|
||||
impl_one_float!(f64);
|
||||
|
||||
/// Types with a sane definition of π and cosine.
|
||||
pub trait Trigo {
|
||||
/// π.
|
||||
fn pi() -> Self;
|
||||
|
||||
/// Cosine of the argument.
|
||||
fn cos(self) -> Self;
|
||||
}
|
||||
|
||||
impl Trigo for f32 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f32::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf32(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Trigo for f64 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f64::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf64(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_hermite`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let one_t = T::one();
|
||||
let two_t = one_t + one_t; // lolololol
|
||||
let three_t = two_t + one_t; // megalol
|
||||
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
||||
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t)
|
||||
+ m0.outer_mul(t3 - t2 * two_t + t)
|
||||
+ b.0.outer_mul(three_t2 - two_t3)
|
||||
+ m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3)
|
||||
+ u.outer_mul(three * one_t_2 * t)
|
||||
+ v.outer_mul(three * one_t * t * t)
|
||||
+ b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
fn lerp(t: $t, a: Self, b: Self) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
|
||||
// sampler stuff
|
||||
let two_t = t * 2.;
|
||||
let three_t = t * 3.;
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.1 - x.1) / (b.0 - x.0);
|
||||
let m1 = (y.1 - a.1) / (y.0 - a.0);
|
||||
|
||||
a.1 * (two_t3 - three_t2 + 1.)
|
||||
+ m0 * (t3 - t2 * two_t + t)
|
||||
+ b.1 * (three_t2 - two_t3)
|
||||
+ m1 * (t3 - t2)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
|
||||
let one_t = 1. - t;
|
||||
let one_t2 = one_t * one_t;
|
||||
|
||||
u + (a - u) * one_t2 + (b - u) * t * t
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||
let one_t = 1. - t;
|
||||
let one_t2 = one_t * one_t;
|
||||
let one_t3 = one_t2 * one_t;
|
||||
let t2 = t * t;
|
||||
|
||||
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
|
||||
}
|
||||
|
||||
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite(
|
||||
(x, xt): (Self, $t),
|
||||
(a, at): (Self, $t),
|
||||
(b, bt): (Self, $t),
|
||||
(y, yt): (Self, $t),
|
||||
t: $t,
|
||||
) -> Self {
|
||||
cubic_hermite_def(
|
||||
(x, xt as $v),
|
||||
(a, at as $v),
|
||||
(b, bt as $v),
|
||||
(y, yt as $v),
|
||||
t as $v,
|
||||
)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
impl_Interpolate!(f32, f32, std::f32::consts::PI);
|
||||
impl_Interpolate!(f64, f64, std::f64::consts::PI);
|
||||
|
@ -6,9 +6,13 @@ use serde_derive::{Deserialize, Serialize};
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
/// Feel free to visit each variant for more documentation.
|
||||
#[non_exhaustive]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
#[cfg_attr(
|
||||
feature = "serialization",
|
||||
derive(Deserialize, Serialize),
|
||||
serde(rename_all = "snake_case")
|
||||
)]
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
@ -20,12 +24,16 @@ pub enum Interpolation<T, V> {
|
||||
///
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom,
|
||||
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
@ -41,6 +49,7 @@ pub enum Interpolation<T, V> {
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
|
||||
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||
///
|
||||
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||
@ -53,8 +62,6 @@ pub enum Interpolation<T, V> {
|
||||
///
|
||||
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||
StrokeBezier(V, V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive,
|
||||
}
|
||||
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
|
12
src/key.rs
12
src/key.rs
@ -1,16 +1,15 @@
|
||||
//! Spline control points.
|
||||
//!
|
||||
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
|
||||
//! A control point associates to a “sampling value” (a.k.a. time) a carried value that can be
|
||||
//! interpolated along the curve made by the control points.
|
||||
//!
|
||||
//! Splines constructed with this crate have the property that it’s possible to change the
|
||||
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
|
||||
|
||||
use crate::interpolation::Interpolation;
|
||||
#[cfg(feature = "serialization")]
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
use crate::interpolation::Interpolation;
|
||||
|
||||
/// A spline control point.
|
||||
///
|
||||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||||
@ -19,8 +18,11 @@ use crate::interpolation::Interpolation;
|
||||
///
|
||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
#[cfg_attr(
|
||||
feature = "serialization",
|
||||
derive(Deserialize, Serialize),
|
||||
serde(rename_all = "snake_case")
|
||||
)]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
|
@ -1,70 +1,18 @@
|
||||
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||
use num_traits as nt;
|
||||
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
|
||||
use std::ops::Mul;
|
||||
use crate::impl_Interpolate;
|
||||
use nalgebra::{Quaternion, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||
|
||||
use crate::interpolate::{
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
};
|
||||
impl_Interpolate!(f32, Vector1<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector2<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector3<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector4<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector5<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector6<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Quaternion<f32>, std::f32::consts::PI);
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
// implement Linear
|
||||
impl<T> Linear<T> for $($t)*<T>
|
||||
where T: Scalar +
|
||||
Copy +
|
||||
ClosedAdd +
|
||||
ClosedSub +
|
||||
ClosedMul +
|
||||
ClosedDiv {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, V> Interpolate<T> for $($t)*<V>
|
||||
where Self: Linear<T>,
|
||||
T: Additive + One + Mul<T, Output = T>,
|
||||
V: nt::One +
|
||||
nt::Zero +
|
||||
Additive +
|
||||
Scalar +
|
||||
ClosedAdd +
|
||||
ClosedMul +
|
||||
ClosedSub +
|
||||
Interpolate<T> {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_vector!(Vector1);
|
||||
impl_interpolate_vector!(Vector2);
|
||||
impl_interpolate_vector!(Vector3);
|
||||
impl_interpolate_vector!(Vector4);
|
||||
impl_interpolate_vector!(Vector5);
|
||||
impl_interpolate_vector!(Vector6);
|
||||
impl_Interpolate!(f64, Vector1<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector2<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector3<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector4<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector5<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector6<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Quaternion<f64>, std::f64::consts::PI);
|
||||
|
125
src/spline.rs
125
src/spline.rs
@ -1,5 +1,9 @@
|
||||
//! Spline curves and operations.
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
use crate::interpolate::{Interpolate, Interpolator};
|
||||
use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use alloc::vec::Vec;
|
||||
#[cfg(not(feature = "std"))]
|
||||
@ -10,12 +14,6 @@ use core::ops::{Div, Mul};
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(feature = "std")]
|
||||
use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")]
|
||||
use std::ops::{Div, Mul};
|
||||
|
||||
use crate::interpolate::{Additive, Interpolate, One, Trigo};
|
||||
use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
///
|
||||
@ -102,40 +100,38 @@ impl<T, V> Spline<T, V> {
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
pub fn sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
|
||||
match cp0.interpolation {
|
||||
let value = match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::step(nt, threshold, cp0.value, cp1.value);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
Some(value)
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::lerp(nt, cp0.value, cp1.value);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
Some(value)
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::cosine(nt, cp0.value, cp1.value);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
Some(value)
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
@ -147,51 +143,47 @@ impl<T, V> Spline<T, V> {
|
||||
let cp1 = &keys[i + 1];
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite(
|
||||
(cpm0.value, cpm0.t),
|
||||
(cp0.value, cp0.t),
|
||||
(cp1.value, cp1.t),
|
||||
(cpm1.value, cpm1.t),
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::cubic_hermite(
|
||||
nt,
|
||||
(cpm0.t, cpm0.value),
|
||||
(cp0.t, cp0.value),
|
||||
(cp1.t, cp1.value),
|
||||
(cpm1.t, cpm1.value),
|
||||
);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
Some(value)
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
|
||||
let value = match cp1.interpolation {
|
||||
Interpolation::Bezier(v) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
|
||||
}
|
||||
Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value),
|
||||
|
||||
Interpolation::StrokeBezier(v, _) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
}
|
||||
Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value),
|
||||
|
||||
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
|
||||
_ => V::quadratic_bezier(nt, cp0.value, u, cp1.value),
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
Some(value)
|
||||
}
|
||||
};
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
value.map(|value| SampledWithKey { value, key: i })
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
self.sample_with_key(t).map(|sampled| sampled.value)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
@ -205,10 +197,10 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
@ -216,18 +208,22 @@ impl<T, V> Spline<T, V> {
|
||||
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
|
||||
if t <= first.t {
|
||||
let second = if self.0.len() >= 2 {
|
||||
Some(&self.0[1])
|
||||
} else {
|
||||
None
|
||||
let sampled = SampledWithKey {
|
||||
value: first.value,
|
||||
key: 0,
|
||||
};
|
||||
Some((first.value, &first, second))
|
||||
Some(sampled)
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some((last.value, &last, None))
|
||||
let sampled = SampledWithKey {
|
||||
value: last.value,
|
||||
key: self.0.len() - 1,
|
||||
};
|
||||
Some(sampled)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -238,10 +234,10 @@ impl<T, V> Spline<T, V> {
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
self.clamped_sample_with_key(t).map(|sampled| sampled.value)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
@ -295,11 +291,22 @@ impl<T, V> Spline<T, V> {
|
||||
}
|
||||
}
|
||||
|
||||
/// A sampled value along with its key index.
|
||||
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
|
||||
pub struct SampledWithKey<V> {
|
||||
/// Sampled value.
|
||||
pub value: V,
|
||||
|
||||
/// Key index.
|
||||
pub key: usize,
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
///
|
||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
#[derive(Debug)]
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
@ -307,16 +314,6 @@ pub struct KeyMut<'a, T, V> {
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T, V>(t: T, cp: &Key<T, V>, cp1: &Key<T, V>) -> T
|
||||
where
|
||||
T: Additive + Div<T, Output = T> + PartialEq,
|
||||
{
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
|
||||
where
|
||||
|
43
tests/cgmath.rs
Normal file
43
tests/cgmath.rs
Normal file
@ -0,0 +1,43 @@
|
||||
#![cfg(feature = "cgmath")]
|
||||
|
||||
use cgmath as cg;
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
#[test]
|
||||
fn cgmath_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = cg::Vector2::new(0.0, 0.0);
|
||||
let mid = cg::Vector2::new(0.5, 0.5);
|
||||
let end = cg::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(0., start, end), start);
|
||||
assert_eq!(Interpolate::lerp(1., start, end), end);
|
||||
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn stroke_bezier_straight() {
|
||||
use float_cmp::approx_eq;
|
||||
|
||||
let keys = vec![
|
||||
Key::new(
|
||||
0.0,
|
||||
cg::Vector2::new(0., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||
),
|
||||
Key::new(
|
||||
5.0,
|
||||
cg::Vector2::new(5., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||
),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||
}
|
@ -1,9 +1,4 @@
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
#[cfg(feature = "cgmath")]
|
||||
use cgmath as cg;
|
||||
#[cfg(feature = "nalgebra")]
|
||||
use nalgebra as na;
|
||||
use splines::{spline::SampledWithKey, Interpolation, Key, Spline};
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_f32() {
|
||||
@ -18,8 +13,14 @@ fn step_interpolation_f32() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
assert_eq!(
|
||||
spline.sample_with_key(0.2),
|
||||
Some(SampledWithKey { value: 10., key: 0 })
|
||||
);
|
||||
assert_eq!(
|
||||
spline.clamped_sample_with_key(1.),
|
||||
Some(SampledWithKey { value: 10., key: 1 })
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -35,8 +36,14 @@ fn step_interpolation_f64() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
assert_eq!(
|
||||
spline.sample_with_key(0.2),
|
||||
Some(SampledWithKey { value: 10., key: 0 })
|
||||
);
|
||||
assert_eq!(
|
||||
spline.clamped_sample_with_key(1.),
|
||||
Some(SampledWithKey { value: 10., key: 1 })
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -151,61 +158,6 @@ fn several_interpolations_several_keys() {
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "cgmath")]
|
||||
#[test]
|
||||
fn stroke_bezier_straight() {
|
||||
use float_cmp::approx_eq;
|
||||
|
||||
let keys = vec![
|
||||
Key::new(
|
||||
0.0,
|
||||
cg::Vector2::new(0., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||
),
|
||||
Key::new(
|
||||
5.0,
|
||||
cg::Vector2::new(5., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||
),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "cgmath")]
|
||||
#[test]
|
||||
fn cgmath_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = cg::Vector2::new(0.0, 0.0);
|
||||
let mid = cg::Vector2::new(0.5, 0.5);
|
||||
let end = cg::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[cfg(feature = "nalgebra")]
|
||||
#[test]
|
||||
fn nalgebra_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = na::Vector2::new(0.0, 0.0);
|
||||
let mid = na::Vector2::new(0.5, 0.5);
|
||||
let end = na::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_key_empty() {
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
16
tests/nalgebra.rs
Normal file
16
tests/nalgebra.rs
Normal file
@ -0,0 +1,16 @@
|
||||
#![cfg(feature = "nalgebra")]
|
||||
|
||||
use nalgebra as na;
|
||||
|
||||
#[test]
|
||||
fn nalgebra_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = na::Vector2::new(0.0, 0.0);
|
||||
let mid = na::Vector2::new(0.5, 0.5);
|
||||
let end = na::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(0., start, end), start);
|
||||
assert_eq!(Interpolate::lerp(1., start, end), end);
|
||||
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user