Add Spline::sample_with_key and Spline::clamped_sample_with_key.
This commit is contained in:
parent
336c1c7e80
commit
cae599e0d7
@ -1,3 +1,12 @@
|
|||||||
|
# 2.1
|
||||||
|
|
||||||
|
> Mon Sep 30th 2019
|
||||||
|
|
||||||
|
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||||
|
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||||
|
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||||
|
interpolation, etc. The next key is also returned, if present.
|
||||||
|
|
||||||
# 2.0.1
|
# 2.0.1
|
||||||
|
|
||||||
> Tue Sep 24th 2019
|
> Tue Sep 24th 2019
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "splines"
|
name = "splines"
|
||||||
version = "2.0.1"
|
version = "2.1.0"
|
||||||
license = "BSD-3-Clause"
|
license = "BSD-3-Clause"
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
description = "Spline interpolation made easy"
|
description = "Spline interpolation made easy"
|
||||||
|
@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
|
|||||||
self.0.is_empty()
|
self.0.is_empty()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time.
|
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||||
|
/// key.
|
||||||
///
|
///
|
||||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||||
@ -84,7 +85,7 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||||
/// the sampling.
|
/// the sampling.
|
||||||
///
|
///
|
||||||
pub fn sample(&self, t: T) -> Option<V>
|
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T> {
|
||||||
let keys = &self.0;
|
let keys = &self.0;
|
||||||
@ -95,14 +96,17 @@ impl<T, V> Spline<T, V> {
|
|||||||
Interpolation::Step(threshold) => {
|
Interpolation::Step(threshold) => {
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Linear => {
|
Interpolation::Linear => {
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Cosine => {
|
Interpolation::Cosine => {
|
||||||
@ -110,8 +114,9 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||||
|
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::CatmullRom => {
|
Interpolation::CatmullRom => {
|
||||||
@ -124,8 +129,9 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cpm0 = &keys[i - 1];
|
let cpm0 = &keys[i - 1];
|
||||||
let cpm1 = &keys[i + 2];
|
let cpm1 = &keys[i + 2];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||||||
|
|
||||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -134,18 +140,30 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
|
let value =
|
||||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||||
} else {
|
} else {
|
||||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||||
}
|
};
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::__NonExhaustive => unreachable!(),
|
Interpolation::__NonExhaustive => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time with clamping.
|
/// Sample a spline at a given time.
|
||||||
|
///
|
||||||
|
pub fn sample(&self, t: T) -> Option<V>
|
||||||
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
|
V: Interpolate<T> {
|
||||||
|
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||||
|
/// associated key.
|
||||||
///
|
///
|
||||||
/// # Return
|
/// # Return
|
||||||
///
|
///
|
||||||
@ -155,22 +173,23 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// # Error
|
/// # Error
|
||||||
///
|
///
|
||||||
/// This function returns [`None`] if you have no key.
|
/// This function returns [`None`] if you have no key.
|
||||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T> {
|
||||||
if self.0.is_empty() {
|
if self.0.is_empty() {
|
||||||
return None;
|
return None;
|
||||||
}
|
}
|
||||||
|
|
||||||
self.sample(t).or_else(move || {
|
self.sample_with_key(t).or_else(move || {
|
||||||
let first = self.0.first().unwrap();
|
let first = self.0.first().unwrap();
|
||||||
if t <= first.t {
|
if t <= first.t {
|
||||||
Some(first.value)
|
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||||||
|
Some((first.value, &first, second))
|
||||||
} else {
|
} else {
|
||||||
let last = self.0.last().unwrap();
|
let last = self.0.last().unwrap();
|
||||||
|
|
||||||
if t >= last.t {
|
if t >= last.t {
|
||||||
Some(last.value)
|
Some((last.value, &last, None))
|
||||||
} else {
|
} else {
|
||||||
None
|
None
|
||||||
}
|
}
|
||||||
@ -178,6 +197,13 @@ impl<T, V> Spline<T, V> {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping.
|
||||||
|
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||||
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
|
V: Interpolate<T> {
|
||||||
|
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||||
|
}
|
||||||
|
|
||||||
/// Add a key into the spline.
|
/// Add a key into the spline.
|
||||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||||
self.0.push(key);
|
self.0.push(key);
|
||||||
|
@ -16,6 +16,8 @@ fn step_interpolation_f32() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||||
|
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||||
|
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
Loading…
Reference in New Issue
Block a user