Add support for polymorphic sampling type.
This commit is contained in:
parent
2b5aac42dd
commit
f3bd7cee24
@ -26,6 +26,9 @@ std = []
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-nalgebra = ["nalgebra"]
|
||||
|
||||
[dependencies]
|
||||
num-traits = "0.2"
|
||||
|
||||
[dependencies.nalgebra]
|
||||
version = ">=0.14, <0.17"
|
||||
optional = true
|
||||
|
150
src/lib.rs
150
src/lib.rs
@ -107,21 +107,24 @@
|
||||
#[cfg(feature = "serialization")] extern crate serde;
|
||||
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;
|
||||
|
||||
#[cfg(feature = "impl-cgmath")] use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
use cgmath::{
|
||||
BaseFloat, InnerSpace, Quaternion, Vector2, Vector3, Vector4
|
||||
};
|
||||
|
||||
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
|
||||
#[cfg(feature = "impl-nalgebra")] use nalgebra::core::{DimName, DefaultAllocator, Scalar};
|
||||
#[cfg(feature = "impl-nalgebra")] use nalgebra::core::allocator::Allocator;
|
||||
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")] use std::f32::consts;
|
||||
#[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub};
|
||||
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))] use core::f32::consts;
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Add, Div, Mul, Sub};
|
||||
|
||||
use num_traits::{Float, FloatConst};
|
||||
|
||||
/// A spline control point.
|
||||
///
|
||||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||||
@ -130,23 +133,19 @@
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T> {
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: f32,
|
||||
pub t: T,
|
||||
/// Held value.
|
||||
pub value: T,
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation
|
||||
pub interpolation: Interpolation<T>
|
||||
}
|
||||
|
||||
impl<T> Key<T> {
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
|
||||
Key {
|
||||
t: t,
|
||||
value: value,
|
||||
interpolation: interpolation
|
||||
}
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
||||
@ -154,7 +153,7 @@ impl<T> Key<T> {
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation {
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
|
||||
/// key is used.
|
||||
///
|
||||
@ -162,7 +161,7 @@ pub enum Interpolation {
|
||||
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// used.*
|
||||
Step(f32),
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
@ -171,7 +170,7 @@ pub enum Interpolation {
|
||||
CatmullRom
|
||||
}
|
||||
|
||||
impl Default for Interpolation {
|
||||
impl<T> Default for Interpolation<T> {
|
||||
/// `Interpolation::Linear` is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
@ -181,12 +180,12 @@ impl Default for Interpolation {
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
#[derive(Debug, Clone)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
pub struct Spline<T>(Vec<Key<T>>);
|
||||
pub struct Spline<T, V>(Vec<Key<T, V>>);
|
||||
|
||||
impl<T> Spline<T> {
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
|
||||
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
|
||||
Spline(keys)
|
||||
@ -199,12 +198,12 @@ impl<T> Spline<T> {
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
|
||||
/// Retrieve the keys of a spline.
|
||||
pub fn keys(&self) -> &[Key<T>] {
|
||||
pub fn keys(&self) -> &[Key<T, V>] {
|
||||
&self.0
|
||||
}
|
||||
|
||||
@ -222,7 +221,7 @@ impl<T> Spline<T> {
|
||||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||||
/// sampling.
|
||||
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
|
||||
pub fn sample(&self, t: T) -> Option<V> where V: Interpolate<T>, T: Float {
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
@ -244,18 +243,7 @@ impl<T> Spline<T> {
|
||||
Interpolation::Cosine => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
(1. - f32::cos(nt * consts::PI)) * 0.5
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
use core::intrinsics::cosf32;
|
||||
unsafe { (1. - cosf32(nt * consts::PI)) * 0.5 }
|
||||
}
|
||||
};
|
||||
let cos_nt = (1. - (nt * T::PI).cos()) * 0.5;
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
}
|
||||
@ -310,13 +298,13 @@ impl<T> Spline<T> {
|
||||
/// Iterator over spline keys.
|
||||
///
|
||||
/// This iterator type assures you to iterate over sorted keys.
|
||||
pub struct Iter<'a, T> where T: 'a {
|
||||
anim_param: &'a Spline<T>,
|
||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
||||
anim_param: &'a Spline<T, V>,
|
||||
i: usize
|
||||
}
|
||||
|
||||
impl<'a, T> Iterator for Iter<'a, T> {
|
||||
type Item = &'a Key<T>;
|
||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let r = self.anim_param.0.get(self.i);
|
||||
@ -329,9 +317,9 @@ impl<'a, T> Iterator for Iter<'a, T> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T> IntoIterator for &'a Spline<T> {
|
||||
type Item = &'a Key<T>;
|
||||
type IntoIter = Iter<'a, T>;
|
||||
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
@ -343,18 +331,22 @@ impl<'a, T> IntoIterator for &'a Spline<T> {
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
pub trait Interpolate: Copy {
|
||||
///
|
||||
/// `T` is the variable used to sample with. Typical implementations use `f32` or `f64`, but you’re
|
||||
/// free to use the ones you like.
|
||||
pub trait Interpolate<T>: Copy where T: Copy + Float {
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self;
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to `Self::lerp`.
|
||||
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
}
|
||||
|
||||
impl Interpolate for f32 {
|
||||
impl Interpolate<f32> for f32 {
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
@ -364,42 +356,58 @@ impl Interpolate for f32 {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
impl Interpolate for Vector2<f32> {
|
||||
impl Interpolate<f32> for f64 {
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
a * (1. - t as f64) + b * t as f64
|
||||
}
|
||||
|
||||
fn cubic_hermite(
|
||||
(x, tx): (Self, f32),
|
||||
(a, ta): (Self, f32),
|
||||
(b, tb): (Self, f32),
|
||||
(y, ty): (Self, f32),
|
||||
t: f32
|
||||
) -> Self {
|
||||
cubic_hermite((x, tx as f64), (a, ta as f64), (b, tb as f64), (y, ty as f64), t as f64)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
impl<T> Interpolate<T> for Vector2<T> where T: BaseFloat {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
impl Interpolate for Vector3<f32> {
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
impl<T> Interpolate<T> for Vector3<T> where T: BaseFloat {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
impl Interpolate for Vector4<f32> {
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
impl<T> Interpolate<T> for Vector4<T> where T: BaseFloat {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
impl Interpolate for Quaternion<f32> {
|
||||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||||
impl<T> Interpolate<T> for Quaternion<T> where T: BaseFloat {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.nlerp(b, t)
|
||||
}
|
||||
}
|
||||
@ -460,32 +468,38 @@ impl Interpolate for na::Vector6<f32> {
|
||||
}
|
||||
}
|
||||
|
||||
// Default implementation of Interpolate::cubic_hermit.
|
||||
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
|
||||
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
|
||||
// time stuff
|
||||
let t2 = t * t;
|
||||
// Default implementation of Interpolate::cubic_hermite.
|
||||
//
|
||||
// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub(crate) fn cubic_hermite<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Copy + Add<Output = V> + Sub<Output = V> + Mul<T, Output = V> + Div<T, Output = V>,
|
||||
T: Mul<Output = T> + Mul<f32, Output = T> + Add<Output = T> + Add<f32, Output = T> + Sub<Output = T> {
|
||||
// sampler stuff
|
||||
let t2 = t* t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = 2. * t3;
|
||||
let three_t2 = 3. * t2;
|
||||
let two_t3 = t3 * 2.;
|
||||
let three_t2 = t2 * 3.;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||||
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||||
|
||||
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
|
||||
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - t2 * 2. + t) + b.0 * (three_t2 - two_t3) + m1 * (t3 - t2)
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
|
||||
pub(crate) fn normalize_time<T, V>(
|
||||
t: T,
|
||||
cp: &Key<T, V>,
|
||||
cp1: &Key<T, V>
|
||||
) -> T where T: PartialEq + Sub<Output = T> + Div<Output = T> {
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||||
let mut i = 0;
|
||||
let len = cps.len();
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user