3 Commits
0.2.2 ... 0.2.3

Author SHA1 Message Date
a3a2919eb4 0.2.3. 2018-10-13 03:31:44 +02:00
37cf89b566 Fix the nalgebra dependency to accept 0.14, 0.15 and 0.16. 2018-10-13 01:05:13 +02:00
77ccf0a47b Add support for nalgebra along with some tests.
Feature-gated with impl-nalgebra.
2018-10-13 01:05:13 +02:00
5 changed files with 138 additions and 26 deletions

View File

@ -1,3 +1,11 @@
## 0.2.3
> Sat 13th October 2018
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
## 0.2.2
> Sun 30th September 2018
@ -16,7 +24,8 @@
> Thu 6th September 2018
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` in order to make it optional, if wanted, the `cgmath` dependency.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
## 0.1.1

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "0.2.2"
version = "0.2.3"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -22,6 +22,11 @@ default = ["std", "impl-cgmath"]
serialization = ["serde", "serde_derive"]
std = []
impl-cgmath = ["cgmath"]
impl-nalgebra = ["nalgebra"]
[dependencies.nalgebra]
version = ">=0.14, <0.17"
optional = true
[dependencies.cgmath]
version = "0.16"

View File

@ -10,11 +10,15 @@ Feel free to dig in the [online documentation](https://docs.rs/splines) for furt
This crate has features! Heres a comprehensive list of what you can enable:
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde`.
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
+ Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors**
+ Adds some usefull implementations of `Interpolate` for some cgmath types.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.

View File

@ -81,8 +81,11 @@
//! types exported by this crate.
//! + Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! + Adds some usefull implementations of `Interpolate` for some cgmath types.
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
@ -98,11 +101,17 @@
#[cfg(feature = "impl-cgmath")] extern crate cgmath;
#[cfg(feature = "impl-nalgebra")] extern crate nalgebra;
#[cfg(feature = "serialization")] extern crate serde;
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;
#[cfg(feature = "impl-cgmath")] use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[cfg(feature = "impl-nalgebra")] use nalgebra::core::{DimName, DefaultAllocator, Scalar};
#[cfg(feature = "impl-nalgebra")] use nalgebra::core::allocator::Allocator;
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::f32::consts;
#[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub};
@ -385,6 +394,62 @@ impl Interpolate for Quaternion<f32> {
}
}
#[cfg(feature = "impl-nalgebra")]
impl<N, D> Interpolate for na::Point<N, D>
where D: DimName,
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Copy,
N: Scalar + Interpolate {
fn lerp(a: Self, b: Self, t: f32) -> Self {
// The 'coords' of a point is just a vector, so we can interpolate component-wise
// over these vectors.
let coords = na::Vector::zip_map(&a.coords, &b.coords, |c1, c2| Interpolate::lerp(c1, c2, t));
na::Point::from_coordinates(coords)
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector1<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector2<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector3<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector4<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector5<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector6<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
// Default implementation of Interpolate::cubic_hermit.
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {

View File

@ -1,11 +1,15 @@
extern crate splines;
#[cfg(feature = "impl-nalgebra")] extern crate nalgebra;
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[cfg(feature = "impl-nalgebra")] use splines::Interpolate;
use splines::{Interpolation, Key, Spline};
#[test]
fn step_interpolation_0() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
@ -19,8 +23,8 @@ fn step_interpolation_0() {
#[test]
fn step_interpolation_0_5() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.5));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -34,8 +38,8 @@ fn step_interpolation_0_5() {
#[test]
fn step_interpolation_0_75() {
let start = Key::new(0., 0., Interpolation::Step(0.75));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.75));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -49,8 +53,8 @@ fn step_interpolation_0_75() {
#[test]
fn step_interpolation_1() {
let start = Key::new(0., 0., Interpolation::Step(1.));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(1.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -64,8 +68,8 @@ fn step_interpolation_1() {
#[test]
fn linear_interpolation() {
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -80,11 +84,11 @@ fn linear_interpolation() {
#[test]
fn linear_interpolation_several_keys() {
let start = Key::new(0., 0., Interpolation::Linear);
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Linear);
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Linear);
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -105,11 +109,11 @@ fn linear_interpolation_several_keys() {
#[test]
fn several_interpolations_several_keys() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -128,3 +132,28 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
}
#[cfg(feature = "impl-nalgebra")]
#[test]
fn nalgebra_point_interpolation() {
let start = na::Point2::new(0.0, 0.0);
let mid = na::Point2::new(0.5, 0.5);
let end = na::Point2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "impl-nalgebra")]
#[test]
fn nalgebra_vector_interpolation() {
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}