Compare commits

..

No commits in common. "master" and "1.0.0" have entirely different histories.

24 changed files with 524 additions and 1000 deletions

View File

@ -1,25 +0,0 @@
version: 2
updates:
- package-ecosystem: cargo
directory: "/."
schedule:
interval: daily
time: "04:00"
open-pull-requests-limit: 10
target-branch: master
reviewers:
- phaazon
assignees:
- phaazon
labels:
- dependency-update
ignore:
- dependency-name: glam
versions:
- 0.13.0
- dependency-name: nalgebra
versions:
- 0.25.0
- dependency-name: cgmath
versions:
- 0.18.0

View File

@ -1,38 +1,39 @@
name: CI
on: [push, pull_request]
on: [push]
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
- name: Test
run: cargo test --verbose --all-features
run: cargo test --verbose
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
- name: Test
run: cargo test --verbose --all-features
run: cargo test --verbose
build-macosx:
runs-on: macOS-latest
runs-on: macosx-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
- name: Test
run: cargo test --verbose --all-features
run: cargo test --verbose
quality:
check-readme:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Install dependencies
run: |
cargo install --force cargo-sync-readme
rustup component add rustfmt
- name: cargo sync-readme
run: |
cargo sync-readme -c
- name: rustfmt
run: cargo fmt -- --check
- name: Install cargo-sync-readme
run: cargo install --force cargo-sync-readme
- name: Check
run: cargo sync-readme -c

View File

@ -1,263 +1,6 @@
# Changelog
* [4.3.1](#431)
* [4.3](#43)
* [4.2](#42)
* [4.1.1](#411)
* [4.1](#41)
* [4.0.3](#403)
* [4.0.2](#402)
* [4.0.1](#401)
* [4.0](#40)
* [Major changes](#major-changes)
* [Patch changes](#patch-changes)
* [3.5.4](#354)
* [3.5.3](#353)
* [3.5.2](#352)
* [3.5.1](#351)
* [3.5](#35)
* [3.4.2](#342)
* [3.4.1](#341)
* [3.4](#34)
* [3.3](#33)
* [3.2](#32)
* [3.1](#31)
* [3.0](#30)
* [Major changes](#major-changes-1)
* [Patch changes](#patch-changes-1)
* [2.2](#22)
* [2.1.1](#211)
* [2.1](#21)
* [2.0.1](#201)
* [2.0](#20)
* [Major changes](#major-changes-2)
* [Minor changes](#minor-changes)
* [1.0](#10)
* [Major changes](#major-changes-3)
* [Minor changes](#minor-changes-1)
* [Patch changes](#patch-changes-2)
* [0.2.3](#023)
* [0.2.2](#022)
* [0.2.1](#021)
* [0.2](#02)
* [0.1.1](#011)
* [0.1](#01)
# 4.3.1
> Nov 22, 2023
- Add `Default` implementation for `Spline`. [c6ba847](https://github.com/phaazon/splines/commit/c6ba847)
# 4.3
> Sep 23, 2023
- Add support for `glam-0.23` and `glam-0.24`. [cdc48a4](https://github.com/phaazon/splines/commit/cdc48a4)
- Add `Spline::clear` to clear a spline keys without deallocating its internal storage. [eca09f1](https://github.com/phaazon/splines/commit/eca09f1)
# 4.2
> Feb 1, 2023
- Add support for `glam-0.22`.
- Add support for `nalgebra-0.32`.
- Add deprecation lints for `impl-*` feature gates. Those shouldnt be used anymore and the `*` variant should be
preferred. For instance, if you used `impl-cgmath`, you should just use the `cgmath` feature gate now.
# 4.1.1
> Jul 27, 2022
- Internal enhancement of sampling splines by looking for control points. That brings the lookup from _O(N)_ to
_O(log(N))_. That is super embarassing because it should have been the default from the very first commit. Sorry
about that.
- Fix hermite cubic interpolation.
- Add support for `glam-0.21`.
- Add support for `nalgebra-0.31`.
# 4.1
> Mar 28, 2022
- Support for edition 2021.
- Bump `float-cmp` dependency.
- Bump `glam` dependency.
- Bump `nalgebra` dependency.
- Simplify the CI.
# 4.0.3
> Jul 11, 2021
- Add more implementors for `Interpolate`.
# 4.0.2
> Jul 11, 2021
- **Yanked.**
# 4.0.1
> Jul 11, 2021
- Add support up to `glam-0.17`.
- Add support up to `nalgebra-0.27`.
- Replace the name of some feature gates:
- `serialization` becomes `serde`.
- `impl-*` becomes `*`.
- The previous feature gates are kept around to prevent a breaking change but will eventually be removed in the next
major update.
# 4.0
> Mar 05, 2021
## Major changes
- Switch the `Interpolation` enum to `#[non_exhaustive]` to allow adding more interpolation modes (if any) in the
future.
- Introduce `SampledWithKey`, which is a more elegant / typed way to access a sample along with its associated key
index.
- Refactor the `Interpolate` trait and add the `Interpolator` trait.
## Patch changes
- Highly simplify the various implementors (`cgmath`, `nalgebra` and `glam`) so that maintenance is easy.
- Expose the `impl_Interpolate` macro, allowing to implement the API all at once if a type implements the various
`std::ops:*` traits. Since most of the crates do, this macro makes it really easy to add support for a crate.
- Drop `simba` as a direct dependency.
- Drop `num-traits` as a direct dependency.
# 3.5.4
> Feb 27, 2021
- Support of `cgmath-0.18`.
# 3.5.3
> Jan 16, 2021
- Resynchronize and fix links in the README (fix in `cargo sync-readme`).
# 3.5.2
> Fri Jan 01, 2021
- Support of `nalgebra-0.24`.
# 3.5.1
> Dec 5th, 2020
- Support of `glam-0.11`.
# 3.5
> Nov 23rd, 2020
- Add support for [glam](https://crates.io/crates/glam) via the `"impl-glam"` feature gate.
- Support of `nalgebra-0.23`.
# 3.4.2
> Oct 24th, 2020
- Support of `simba-0.3`.
# 3.4.1
> Sep 5th, 2020
- Support of `simba-0.2`.
- Support of `nalgebra-0.22`.
# 3.4
> Thu May 21st 2020
- Add support for `float-cmp-0.7` and `float-cmp-0.8`. Because this uses a SemVer range, if you
already have a `Cargo.lock`, dont forget to update `splines` with `cargo update --aggressive`.
# 3.3
> Thu Apr 10th 2020
- Add support for `nalgebra-0.21`.
# 3.2
> Thu Mar 19th 2020
- Add support for `nalgebra-0.20`.
- Add support for `float-cmp-0.6`.
# 3.1
> Sat Jan 26th 2020
- Add support for `nalgebra-0.19`.
# 3.0
> Tue Oct 22th 2019
## Major changes
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
to ease some interpolation mode (especially Bézier).
## Patch changes
- Fix Bézier interpolation when the next key is Bézier too.
# 2.2
> Mon Oct 17th 2019
- Add `Interpolation::StrokeBezier`.
# 2.1.1
> Mon Oct 17th 2019
- Licensing support in the crate.
# 2.1
> Mon Sep 30th 2019
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
key that was used to perform the interpolation. The key can be inspected to get the base time,
interpolation, etc. The next key is also returned, if present.
# 2.0.1
> Tue Sep 24th 2019
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
next keys tangent around its control point.
# 2.0
> Mon Sep 23rd 2019
## Major changes
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
should interpolate with Bézier.
## Minor changes
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
# 1.0
> Sun Sep 22nd 2019
> Sun Sep 22th 2019
## Major changes

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "4.3.1"
version = "1.0.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -11,32 +11,28 @@ repository = "https://github.com/phaazon/splines"
documentation = "https://docs.rs/splines"
readme = "README.md"
edition = "2021"
edition = "2018"
[badges]
travis-ci = { repository = "phaazon/splines", branch = "master" }
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
is-it-maintained-open-issues = { repository = "phaazon/splines" }
maintenance = { status = "actively-developed" }
[features]
default = ["std"]
impl-cgmath = ["cgmath"]
impl-glam = ["glam"]
impl-nalgebra = ["nalgebra"]
serialization = ["serde"]
std = ["nalgebra/std"]
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
serialization = ["serde", "serde_derive"]
std = []
[dependencies]
cgmath = { version = ">=0.17, <0.19", optional = true }
glam = { version = ">=0.10, <0.25", optional = true }
nalgebra = { version = ">=0.21, <0.33", default-features = false, optional = true }
serde = { version = "1", features = ["derive"], optional = true }
[dev-dependencies]
float-cmp = ">=0.6, < 0.10"
serde_json = "1"
alga = { version = "0.9", optional = true }
cgmath = { version = "0.17", optional = true }
nalgebra = { version = ">=0.14, <0.19", optional = true }
num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }
[package.metadata.docs.rs]
features = ["std", "cgmath", "glam", "nalgebra", "serde"]
[[example]]
name = "hello-world"
[[example]]
name = "serialization"
required-features = ["serde"]
all-features = true

30
LICENSE
View File

@ -1,30 +0,0 @@
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -24,7 +24,7 @@ is picked from its lower control point.
# Quickly create splines
```rust
```
use splines::{Interpolation, Key, Spline};
let start = Key::new(0., 0., Interpolation::Linear);
@ -46,7 +46,7 @@ value.
If you try to sample in out-of-bounds sampling parameter, youll get no value.
```rust
```
assert_eq!(spline.sample(0.), Some(0.));
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample(1.1), None);
@ -56,7 +56,7 @@ Its possible that you want to get a value even if youre out-of-bounds. Thi
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
that purpose.
```rust
```
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
```
@ -66,7 +66,7 @@ assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
kind of type; that type must, however, implement a contract defined by a set of traits to
implement. See [the documentation of this module](https://docs.rs/splines/latest/splines/interpolate/) for further details.
implement. See [the documentation of this module](crate::interpolate) for further details.
# Features and customization
@ -83,25 +83,20 @@ not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serde.**
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
- Enable with the `"serde"` feature.
+ Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"cgmath"` feature.
- **[glam](https://crates.io/crates/glam) implementors.**
- Adds some useful implementations of `Interpolate` for some glam types.
- Enable with the `"glam"` feature.
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"nalgebra"` feature.
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.
- Use `default-features = []` in your `Cargo.toml` to disable.
- Enable explicitly with the `"std"` feature.
[`Interpolation`]: crate::interpolation::Interpolation
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `default-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feature.
<!-- cargo-sync-readme end -->

View File

@ -0,0 +1,7 @@
[package]
name = "hello-world"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
splines = "1.0.0-rc.2"

View File

@ -3,10 +3,7 @@ extern crate splines;
use splines::{Interpolation, Key, Spline};
fn main() {
let keys = vec![
Key::new(0., 0., Interpolation::default()),
Key::new(5., 1., Interpolation::default()),
];
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
let spline = Spline::from_vec(keys);
println!("value at 0: {:?}", spline.clamped_sample(0.));

View File

@ -0,0 +1,8 @@
[package]
name = "serialization"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
serde_json = "1"
splines = { version = "1.0.0-rc.2", features = ["serialization"] }

View File

@ -1,12 +1,11 @@
#[macro_use]
extern crate serde_json;
#[macro_use] extern crate serde_json;
extern crate splines;
use serde_json::from_value;
use splines::Spline;
fn main() {
let value = json! {
let value = json!{
[
{
"t": 0,

9
examples/Cargo.toml Normal file
View File

@ -0,0 +1,9 @@
[workspace]
members = [
"01-hello-world",
"02-serialization"
]
[patch.crates-io]
splines = { path = ".." }

View File

@ -1,15 +0,0 @@
edition = "2018"
fn_params_layout = "Tall"
force_explicit_abi = true
hard_tabs = false
max_width = 100
merge_derives = true
newline_style = "Unix"
remove_nested_parens = true
reorder_imports = true
reorder_modules = true
tab_spaces = 2
use_field_init_shorthand = true
use_small_heuristics = "Default"
use_try_shorthand = true

View File

@ -1,15 +1,64 @@
use crate::impl_Interpolate;
use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use cgmath::{Quaternion, Vector1, Vector2, Vector3, Vector4};
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
impl_Interpolate!(f32, Vector1<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Vector2<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Vector3<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Vector4<f32>, std::f32::consts::PI);
impl_Interpolate!(f32, Quaternion<f32>, std::f32::consts::PI);
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
impl_Interpolate!(f64, Vector1<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Vector2<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Vector3<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Vector4<f64>, std::f64::consts::PI);
impl_Interpolate!(f64, Quaternion<f64>, std::f64::consts::PI);
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for $($t)*<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.lerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}
}
}
impl_interpolate_vec!(Vector1);
impl_interpolate_vec!(Vector2);
impl_interpolate_vec!(Vector3);
impl_interpolate_vec!(Vector4);
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}

View File

@ -1,8 +0,0 @@
use crate::impl_Interpolate;
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
impl_Interpolate!(f32, Vec2, std::f32::consts::PI);
impl_Interpolate!(f32, Vec3, std::f32::consts::PI);
impl_Interpolate!(f32, Vec3A, std::f32::consts::PI);
impl_Interpolate!(f32, Vec4, std::f32::consts::PI);
impl_Interpolate!(f32, Quat, std::f32::consts::PI);

View File

@ -28,220 +28,220 @@
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits
#[cfg(not(feature = "std"))]
use core::f32;
#[cfg(not(feature = "std"))]
use core::f64;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf32;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf64;
#[cfg(not(feature = "std"))]
use core::ops::{Add, Mul, Sub};
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use std::f64;
#[cfg(feature = "std")] use std::f32;
#[cfg(not(feature = "std"))] use core::f32;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
#[cfg(feature = "std")] use std::f64;
#[cfg(not(feature = "std"))] use core::f64;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
/// Types that can be used as interpolator in splines.
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
///
/// An interpolator value is like the fabric on which control keys (and sampled values) live on.
pub trait Interpolator: Sized + Copy + PartialOrd {
/// Normalize the interpolator.
fn normalize(self, start: Self, end: Self) -> Self;
}
macro_rules! impl_Interpolator {
($t:ty) => {
impl Interpolator for $t {
fn normalize(self, start: Self, end: Self) -> Self {
(self - start) / (end - start)
}
}
};
}
impl_Interpolator!(f32);
impl_Interpolator!(f64);
/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines.
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
/// instance to know which trait your type must implement to be usable.
///
/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like.
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy {
/// Step interpolation.
fn step(t: T, threshold: T, a: Self, b: Self) -> Self;
/// Linear interpolation.
fn lerp(t: T, a: Self, b: Self) -> Self;
/// Cosine interpolation.
fn cosine(t: T, a: Self, b: Self) -> Self;
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self;
/// Quadratic Bézier interpolation.
///
/// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve.
fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self;
/// Cubic Bézier interpolation.
/// Default to [`lerp`].
///
/// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the
/// input tangent of `b` to the curve.
fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
/// Cubic Bézier interpolation special case for non-explicit second tangent.
///
/// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by
/// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are
/// mirrored for the same key).
fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
}
#[macro_export]
macro_rules! impl_Interpolate {
($t:ty, $v:ty, $pi:expr) => {
impl $crate::interpolate::Interpolate<$t> for $v {
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
if t < threshold {
a
} else {
b
}
/// Set of types that support additions and subtraction.
///
/// The [`Copy`] trait is also a supertrait as its likely to be used everywhere.
pub trait Additive:
Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
impl<T> Additive for T
where T: Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
}
macro_rules! impl_linear_simple {
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
#[cfg(feature = "std")]
fn cosine(t: $t, a: Self, b: Self) -> Self {
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
#[cfg(not(feature = "std"))]
fn cosine(t: $t, a: Self, b: Self) -> Self {
unimplemented!();
}
}
}
impl_linear_simple!(f32);
impl_linear_simple!(f64);
macro_rules! impl_linear_cast {
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
fn lerp(t: $t, a: Self, b: Self) -> Self {
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
}
}
impl_linear_cast!(f32, f64);
impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
macro_rules! impl_one_float {
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
}
}
impl_one_float!(f32);
impl_one_float!(f64);
/// Types with a sane definition of π and cosine.
pub trait Trigo {
/// π.
fn pi() -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
}
impl Trigo for f32 {
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
}
}
impl Trigo for f64 {
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
}
}
/// Default implementation of [`Interpolate::cubic_hermite`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
// sampler stuff
let two_t = t * 2.;
let three_t = t * 3.;
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t2 * two_t;
let two_t2 = t * two_t;
let three_t2 = t * three_t;
// tangents
let m0 = (b.1 - x.1) / (b.0 - x.0) * (b.0 - a.0);
let m1 = (y.1 - a.1) / (y.0 - a.0) * (b.0 - a.0);
a.1 * (two_t3 - three_t2 + 1.)
+ m0 * (t3 - two_t2 + t)
+ b.1 * (three_t2 - two_t3)
+ m1 * (t3 - t2)
}
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
let one_t = 1. - t;
let one_t2 = one_t * one_t;
u + (a - u) * one_t2 + (b - u) * t * t
}
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
let one_t = 1. - t;
let one_t2 = one_t * one_t;
let one_t3 = one_t2 * one_t;
let t2 = t * t;
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
}
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}
};
}
}
#[macro_export]
macro_rules! impl_InterpolateT {
($t:ty, $v:ty, $pi:expr) => {
impl $crate::interpolate::Interpolate<$t> for $v {
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
if t < threshold {
a
} else {
b
}
impl_interpolate_simple!(f32);
impl_interpolate_simple!(f64);
macro_rules! impl_interpolate_via {
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
#[cfg(feature = "std")]
fn cosine(t: $t, a: Self, b: Self) -> Self {
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
}
#[cfg(not(feature = "std"))]
fn cosine(t: $t, a: Self, b: Self) -> Self {
unimplemented!()
}
fn lerp(t: $t, a: Self, b: Self) -> Self {
let t = Self::from(t);
a * (1. - t) + b * t
}
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
// sampler stuff
let t = Self::from(t);
let two_t = t * 2.;
let three_t = t * 3.;
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t2 * two_t;
let two_t2 = t * two_t;
let three_t2 = t * three_t;
// tangents
let m0 = (b.1 - x.1) / (Self::from(b.0 - x.0)) * (Self::from(b.0 - a.0));
let m1 = (y.1 - a.1) / (Self::from(y.0 - a.0)) * (Self::from(b.0 - a.0));
a.1 * (two_t3 - three_t2 + 1.)
+ m0 * (t3 - two_t2 + t)
+ b.1 * (three_t2 - two_t3)
+ m1 * (t3 - t2)
}
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
let t = Self::from(t);
let one_t = 1. - t;
let one_t2 = one_t * one_t;
u + (a - u) * one_t2 + (b - u) * t * t
}
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
let t = Self::from(t);
let one_t = 1. - t;
let one_t2 = one_t * one_t;
let one_t3 = one_t2 * one_t;
let t2 = t * t;
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
}
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
}
};
}
}
impl_Interpolate!(f32, f32, f32::consts::PI);
impl_Interpolate!(f64, f64, f64::consts::PI);
impl_InterpolateT!(f32, f64, f32::consts::PI);
impl_interpolate_via!(f32, f64);
impl_interpolate_via!(f64, f32);

View File

@ -1,20 +1,15 @@
//! Available interpolation modes.
#[cfg(any(feature = "serialization", feature = "serde"))]
use serde::{Deserialize, Serialize};
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[non_exhaustive]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(
any(feature = "serialization", feature = "serde"),
derive(Deserialize, Serialize),
serde(rename_all = "snake_case")
)]
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T> {
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
@ -22,51 +17,20 @@ pub enum Interpolation<T, V> {
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
/// [`Key<T, _>`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
///
/// With this kind of interpolation, a control point has an input tangent, which has the same role
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
/// role defined by the next keys [`Interpolation::Bezier`] if present, normally.
///
/// What it means is that instead of setting the output tangent as the next keys Bézier tangent,
/// this interpolation mode allows you to manually set the output tangent. That will yield more
/// control on the tangents but might generate discontinuities. Use with care.
///
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
StrokeBezier(V, V),
CatmullRom
}
impl<T, V> Default for Interpolation<T, V> {
impl<T> Default for Interpolation<T> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

View File

@ -11,13 +11,9 @@ use crate::{Key, Spline};
/// Iterator over spline keys.
///
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V>
where
T: 'a,
V: 'a,
{
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
spline: &'a Spline<T, V>,
i: usize,
i: usize
}
impl<'a, T, V> Iterator for Iter<'a, T, V> {
@ -39,6 +35,10 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
type IntoIter = Iter<'a, T, V>;
fn into_iter(self) -> Self::IntoIter {
Iter { spline: self, i: 0 }
Iter {
spline: self,
i: 0
}
}
}

View File

@ -1,14 +1,14 @@
//! Spline control points.
//!
//! A control point associates to a “sampling value” (a.k.a. time) a carried value that can be
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
//! interpolated along the curve made by the control points.
//!
//! Splines constructed with this crate have the property that its possible to change the
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
use crate::interpolation::Interpolation;
#[cfg(any(feature = "serialization", feature = "serde"))]
use serde::{Deserialize, Serialize};
/// A spline control point.
///
@ -18,27 +18,20 @@ use serde::{Deserialize, Serialize};
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(
any(feature = "serialization", feature = "serde"),
derive(Deserialize, Serialize),
serde(rename_all = "snake_case")
)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>,
pub interpolation: Interpolation<T>
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key {
t,
value,
interpolation,
}
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
Key { t, value, interpolation }
}
}

View File

@ -84,55 +84,34 @@
//!
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serde.**
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! - **Serialization / deserialization.**
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! - Enable with the `"serde"` feature.
//! + Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"cgmath"` feature.
//! - **[glam](https://crates.io/crates/glam) implementors.**
//! - Adds some useful implementations of `Interpolate` for some glam types.
//! - Enable with the `"glam"` feature.
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"nalgebra"` feature.
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
//! - Use `default-features = []` in your `Cargo.toml` to disable.
//! - Enable explicitly with the `"std"` feature.
//!
//! [`Interpolation`]: crate::interpolation::Interpolation
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
//! + Use `default-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feature.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
#![cfg_attr(
any(
feature = "impl-cgmath",
feature = "impl-glam",
feature = "impl-nalgebra"
),
deprecated(
since = "4.2.0",
note = "you are using an impl-* feature gate; please switch to * (e.g. impl-cgmath becomes cgmath)"
)
)]
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(not(feature = "std"))] extern crate alloc;
#[cfg(any(feature = "impl-cgmath", feature = "cgmath"))]
mod cgmath;
#[cfg(any(feature = "impl-glam", feature = "glam"))]
mod glam;
#[cfg(feature = "impl-cgmath")] mod cgmath;
pub mod interpolate;
pub mod interpolation;
pub mod iter;
pub mod key;
#[cfg(any(feature = "impl-nalgebra", feature = "nalgebra"))]
mod nalgebra;
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
pub mod spline;
pub use crate::interpolate::Interpolate;

View File

@ -1,27 +1,52 @@
#[cfg(not(feature = "std"))]
use core::f32;
#[cfg(not(feature = "std"))]
use core::f64;
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use std::f64;
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use num_traits as nt;
use std::ops::Mul;
use crate::impl_Interpolate;
use nalgebra::{Quaternion, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
impl_Interpolate!(f32, Vector1<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector2<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector3<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector4<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector5<f32>, f32::consts::PI);
impl_Interpolate!(f32, Vector6<f32>, f32::consts::PI);
impl_Interpolate!(f32, Quaternion<f32>, f32::consts::PI);
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
// implement Linear
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
impl_Interpolate!(f64, Vector1<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector2<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector3<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector4<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector5<f64>, f64::consts::PI);
impl_Interpolate!(f64, Vector6<f64>, f64::consts::PI);
impl_Interpolate!(f64, Quaternion<f64>, f64::consts::PI);
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T, V> Interpolate<T> for $($t)*<V>
where Self: Linear<T>,
T: Additive + One + Mul<T, Output = T>,
V: nt::One +
nt::Zero +
Additive +
Scalar +
ClosedAdd +
ClosedMul +
ClosedSub +
Interpolate<T> {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}
}
}
impl_interpolate_vector!(Vector1);
impl_interpolate_vector!(Vector2);
impl_interpolate_vector!(Vector3);
impl_interpolate_vector!(Vector4);
impl_interpolate_vector!(Vector5);
impl_interpolate_vector!(Vector6);

View File

@ -1,19 +1,15 @@
//! Spline curves and operations.
// #[cfg(feature = "std")]
use crate::interpolate::{Interpolate, Interpolator};
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
use crate::interpolate::{Interpolate, Additive, One, Trigo};
use crate::interpolation::Interpolation;
use crate::key::Key;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
#[cfg(not(feature = "std"))]
use core::cmp::Ordering;
#[cfg(not(feature = "std"))]
use core::ops::{Div, Mul};
#[cfg(any(feature = "serialization", feature = "serde"))]
use serde::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::cmp::Ordering;
/// Spline curve used to provide interpolation between control points (keys).
///
@ -27,42 +23,24 @@ use std::cmp::Ordering;
/// for the required interpolation mode, you get `None`.
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
/// or last key if out of bound; it will return `None` if not enough key.
#[derive(Debug, Clone, Default)]
#[cfg_attr(
any(feature = "serialization", feature = "serde"),
derive(Deserialize, Serialize)
)]
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self)
where
T: PartialOrd,
{
self
.0
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
fn internal_sort(&mut self) where T: PartialOrd {
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
where
T: PartialOrd,
{
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Clear the spline by removing all keys. Keeps the underlying allocated storage, so adding
/// new keys should be faster than creating a new [`Spline`]
#[inline]
pub fn clear(&mut self) {
self.0.clear()
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
@ -70,11 +48,7 @@ impl<T, V> Spline<T, V> {
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self
where
I: Iterator<Item = Key<T, V>>,
T: PartialOrd,
{
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
Self::from_vec(iter.collect())
}
@ -95,8 +69,7 @@ impl<T, V> Spline<T, V> {
self.0.is_empty()
}
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
@ -110,38 +83,35 @@ impl<T, V> Spline<T, V> {
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
pub fn sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
where
T: Interpolator,
V: Interpolate<T>,
{
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
let value = match cp0.interpolation {
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::step(nt, threshold, cp0.value, cp1.value);
Some(value)
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::lerp(nt, cp0.value, cp1.value);
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(value)
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
}
Interpolation::Cosine => {
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::cosine(nt, cp0.value, cp1.value);
let two_t = T::one() + T::one();
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
Some(value)
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
}
Interpolation::CatmullRom => {
@ -150,54 +120,18 @@ impl<T, V> Spline<T, V> {
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = t.normalize(cp0.t, cp1.t);
let value = V::cubic_hermite(
nt,
(cpm0.t, cpm0.value),
(cp0.t, cp0.value),
(cp1.t, cp1.value),
(cpm1.t, cpm1.value),
);
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(value)
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = t.normalize(cp0.t, cp1.t);
let value = match cp1.interpolation {
Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value),
Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value),
_ => V::quadratic_bezier(nt, cp0.value, u, cp1.value),
};
Some(value)
}
};
value.map(|value| SampledWithKey { value, key: i })
}
}
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where
T: Interpolator,
V: Interpolate<T>,
{
self.sample_with_key(t).map(|sampled| sampled.value)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
/// Sample a spline at a given time with clamping.
///
/// # Return
///
@ -207,33 +141,22 @@ impl<T, V> Spline<T, V> {
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
where
T: Interpolator,
V: Interpolate<T>,
{
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample_with_key(t).or_else(move || {
self.sample(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
let sampled = SampledWithKey {
value: first.value,
key: 0,
};
Some(sampled)
Some(first.value)
} else {
let last = self.0.last().unwrap();
if t >= last.t {
let sampled = SampledWithKey {
value: last.value,
key: self.0.len() - 1,
};
Some(sampled)
Some(last.value)
} else {
None
}
@ -241,20 +164,8 @@ impl<T, V> Spline<T, V> {
})
}
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where
T: Interpolator,
V: Interpolate<T>,
{
self.clamped_sample_with_key(t).map(|sampled| sampled.value)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>)
where
T: PartialOrd,
{
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);
self.internal_sort();
}
@ -267,78 +178,48 @@ impl<T, V> Spline<T, V> {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd,
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation,
})
}
}
/// A sampled value along with its key index.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct SampledWithKey<V> {
/// Sampled value.
pub value: V,
/// Key index.
pub key: usize,
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
#[derive(Debug)]
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T, V>(
t: T,
cp: &Key<T, V>,
cp1: &Key<T, V>
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
// It has the property to have a timestamp smaller or equal to t
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
where
T: PartialOrd,
{
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
match cps.binary_search_by(|key| key.t.partial_cmp(&t).unwrap()) {
Err(i) if i >= len => None,
Err(i) if i == 0 => None,
Err(i) => Some(i - 1),
Ok(i) if i == len - 1 => None,
Ok(i) => Some(i),
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}

View File

@ -1,43 +0,0 @@
#![cfg(feature = "cgmath")]
use cgmath as cg;
use splines::{Interpolation, Key, Spline};
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(0., start, end), start);
assert_eq!(Interpolate::lerp(1., start, end), end);
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
}
#[test]
fn stroke_bezier_straight() {
use float_cmp::approx_eq;
let keys = vec![
Key::new(
0.0,
cg::Vector2::new(0., 1.),
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
),
Key::new(
5.0,
cg::Vector2::new(5., 1.),
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
),
];
let spline = Spline::from_vec(keys);
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
}

View File

@ -1,4 +1,7 @@
use splines::{spline::SampledWithKey, Interpolation, Key, Spline};
use splines::{Interpolation, Key, Spline};
#[cfg(feature = "impl-cgmath")] use cgmath as cg;
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[test]
fn step_interpolation_f32() {
@ -13,14 +16,6 @@ fn step_interpolation_f32() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(
spline.sample_with_key(0.2),
Some(SampledWithKey { value: 10., key: 0 })
);
assert_eq!(
spline.clamped_sample_with_key(1.),
Some(SampledWithKey { value: 10., key: 1 })
);
}
#[test]
@ -36,14 +31,6 @@ fn step_interpolation_f64() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(
spline.sample_with_key(0.2),
Some(SampledWithKey { value: 10., key: 0 })
);
assert_eq!(
spline.clamped_sample_with_key(1.),
Some(SampledWithKey { value: 10., key: 1 })
);
}
#[test]
@ -158,6 +145,34 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[cfg(feature = "impl-cgmath")]
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "impl-nalgebra")]
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[test]
fn add_key_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);

View File

@ -1,16 +0,0 @@
#![cfg(feature = "nalgebra")]
use nalgebra as na;
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(0., start, end), start);
assert_eq!(Interpolate::lerp(1., start, end), end);
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
}