240 lines
7.2 KiB
Rust
240 lines
7.2 KiB
Rust
//! Spline interpolation made easy.
|
||
//!
|
||
//! This crate exposes splines for which each sections can be interpolated independently of each
|
||
//! other – i.e. it’s possible to interpolate with a linear interpolator on one section and then
|
||
//! switch to a cube Hermite interpolatior for the next section.
|
||
//!
|
||
//! Most of the library consists of three types:
|
||
//!
|
||
//! - [`Key`], which represents the control points by which the spline must pass.
|
||
//! - [`Interpolation`], the type of possible interpolation for each segment.
|
||
//! - [`Spline`], a spline from which you can *sample* points by interpolation.
|
||
//!
|
||
//! When adding control points, you add new sections. Two control points define a section – i.e.
|
||
//! it’s not possible to define a spline without at least two control points. Every time you add a
|
||
//! new control point, a new section is created. Each section is assigned an interpolation mode that
|
||
//! is picked from its lower control point.
|
||
//!
|
||
//! ```
|
||
//! use splines::{Interpolation, Key, Spline};
|
||
//!
|
||
//! let start = Key::new(0., 0., Interpolation::Linear);
|
||
//! let end = Key::new(1., 10., Interpolation::Linear);
|
||
//! let spline = Spline::from_keys(vec![start, end]);
|
||
//!
|
||
//! assert_eq!(spline.sample(0.), Some(0.));
|
||
//! assert_eq!(spline.sample(1.), Some(10.));
|
||
//! ```
|
||
|
||
use std::cmp::Ordering;
|
||
use std::f32::consts;
|
||
use std::ops::{Add, Div, Mul, Sub};
|
||
|
||
/// A spline control point.
|
||
///
|
||
/// This type associates a value at a given time. It also contains an interpolation object used to
|
||
/// determine how to interpolate values on the segment defined by this key and the next one.
|
||
#[derive(Copy, Clone, Debug)]
|
||
pub struct Key<T> {
|
||
/// f32 at which the `Key` should be reached.
|
||
pub t: f32,
|
||
/// Actual value.
|
||
pub value: T,
|
||
/// Interpolation mode.
|
||
pub interpolation: Interpolation
|
||
}
|
||
|
||
impl<T> Key<T> {
|
||
/// Create a new key.
|
||
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
|
||
Key {
|
||
t: t,
|
||
value: value,
|
||
interpolation: interpolation
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Interpolation mode.
|
||
#[derive(Copy, Clone, Debug)]
|
||
pub enum Interpolation {
|
||
/// Hold a `Key` until the time passes the normalized step threshold, in which case the next
|
||
/// key is used.
|
||
///
|
||
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
|
||
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||
/// first key will be kept until the next key.*
|
||
Step(f32),
|
||
/// Linear interpolation between a key and the next one.
|
||
Linear,
|
||
/// Cosine interpolation between a key and the next one.
|
||
Cosine,
|
||
/// Catmull-Rom interpolation.
|
||
CatmullRom
|
||
}
|
||
|
||
impl Default for Interpolation {
|
||
/// `Interpolation::Linear` is the default.
|
||
fn default() -> Self {
|
||
Interpolation::Linear
|
||
}
|
||
}
|
||
|
||
/// Spline curve used to provide interpolation between control points (keys).
|
||
#[derive(Debug, Clone)]
|
||
pub struct Spline<T>(Vec<Key<T>>);
|
||
|
||
impl<T> Spline<T> {
|
||
/// Create a new spline out of keys. The keys don’t have to be sorted because they’re sorted by
|
||
/// this function.
|
||
pub fn from_keys(mut keys: Vec<Key<T>>) -> Self {
|
||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||
|
||
Spline(keys)
|
||
}
|
||
|
||
/// Retrieve the keys of a spline.
|
||
pub fn keys(&self) -> &[Key<T>] {
|
||
&self.0
|
||
}
|
||
|
||
/// Sample a spline at a given time.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||
/// happen if you try to sample between two keys with a specific interpolation mode that make the
|
||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||
/// sampling.
|
||
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
|
||
let first = self.0.first().unwrap();
|
||
let last = self.0.last().unwrap();
|
||
|
||
if t <= first.t {
|
||
return Some(first.value);
|
||
} else if t >= last.t {
|
||
return Some(last.value);
|
||
}
|
||
|
||
let keys = &self.0;
|
||
let i = keys.binary_search_by(|key| key.t.partial_cmp(&t).unwrap_or(Ordering::Less)).ok()?;
|
||
|
||
let cp0 = &keys[i];
|
||
|
||
match cp0.interpolation {
|
||
Interpolation::Step(threshold) => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||
},
|
||
Interpolation::Linear => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||
},
|
||
Interpolation::Cosine => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let cos_nt = (1. - f32::cos(nt * consts::PI)) * 0.5;
|
||
|
||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||
},
|
||
Interpolation::CatmullRom => {
|
||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||
// None.
|
||
if i == 0 || i >= keys.len() - 2 {
|
||
None
|
||
} else {
|
||
let cp1 = &keys[i+1];
|
||
let cpm0 = &keys[i-1];
|
||
let cpm1 = &keys[i+2];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Iterator over spline keys.
|
||
pub struct Iter<'a, T> where T: 'a {
|
||
anim_param: &'a Spline<T>,
|
||
i: usize
|
||
}
|
||
|
||
impl<'a, T> Iterator for Iter<'a, T> {
|
||
type Item = &'a Key<T>;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
let r = self.anim_param.0.get(self.i);
|
||
|
||
if let Some(_) = r {
|
||
self.i += 1;
|
||
}
|
||
|
||
r
|
||
}
|
||
}
|
||
|
||
impl<'a, T> IntoIterator for &'a Spline<T> {
|
||
type Item = &'a Key<T>;
|
||
type IntoIter = Iter<'a, T>;
|
||
|
||
fn into_iter(self) -> Self::IntoIter {
|
||
Iter {
|
||
anim_param: self,
|
||
i: 0
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||
/// sampling on splines.
|
||
pub trait Interpolate: Copy {
|
||
/// Linear interpolation.
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self;
|
||
/// Cubic hermite interpolation.
|
||
///
|
||
/// Default to `Self::lerp`.
|
||
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
|
||
Self::lerp(a.0, b.0, t)
|
||
}
|
||
}
|
||
|
||
impl Interpolate for f32 {
|
||
fn lerp(a: Self, b: Self, t: f32) -> Self {
|
||
a * (1. - t) + b * t
|
||
}
|
||
|
||
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
|
||
cubic_hermite(x, a, b, y, t)
|
||
}
|
||
}
|
||
|
||
// Default implementation of Interpolate::cubic_hermit.
|
||
pub fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
|
||
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
|
||
// time stuff
|
||
let t2 = t * t;
|
||
let t3 = t2 * t;
|
||
let two_t3 = 2. * t3;
|
||
let three_t2 = 3. * t2;
|
||
|
||
// tangents
|
||
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||
|
||
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
|
||
}
|
||
|
||
// Normalize a time ([0;1]) given two control points.
|
||
#[inline(always)]
|
||
pub fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
|
||
assert!(cp1.t != cp.t);
|
||
|
||
(t - cp.t) / (cp1.t - cp.t)
|
||
}
|